This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphisms between simple pseudographs map cycles onto cycles. (Contributed by AV, 31-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| upgrimwlk.j | |- J = ( iEdg ` H ) |
||
| upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
||
| upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
||
| upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
||
| upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
||
| upgrimcycls.c | |- ( ph -> F ( Cycles ` G ) P ) |
||
| Assertion | upgrimcycls | |- ( ph -> E ( Cycles ` H ) ( N o. P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrimwlk.i | |- I = ( iEdg ` G ) |
|
| 2 | upgrimwlk.j | |- J = ( iEdg ` H ) |
|
| 3 | upgrimwlk.g | |- ( ph -> G e. USPGraph ) |
|
| 4 | upgrimwlk.h | |- ( ph -> H e. USPGraph ) |
|
| 5 | upgrimwlk.n | |- ( ph -> N e. ( G GraphIso H ) ) |
|
| 6 | upgrimwlk.e | |- E = ( x e. dom F |-> ( `' J ` ( N " ( I ` ( F ` x ) ) ) ) ) |
|
| 7 | upgrimcycls.c | |- ( ph -> F ( Cycles ` G ) P ) |
|
| 8 | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
|
| 9 | 7 8 | syl | |- ( ph -> F ( Paths ` G ) P ) |
| 10 | 1 2 3 4 5 6 9 | upgrimpths | |- ( ph -> E ( Paths ` H ) ( N o. P ) ) |
| 11 | iscycl | |- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 12 | 11 | simprbi | |- ( F ( Cycles ` G ) P -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 13 | 7 12 | syl | |- ( ph -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 14 | 13 | fveq2d | |- ( ph -> ( N ` ( P ` 0 ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 15 | cycliswlk | |- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
|
| 16 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 17 | 16 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 18 | 7 15 17 | 3syl | |- ( ph -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 19 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 20 | 7 15 19 | 3syl | |- ( ph -> ( # ` F ) e. NN0 ) |
| 21 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 23 | 18 22 | fvco3d | |- ( ph -> ( ( N o. P ) ` 0 ) = ( N ` ( P ` 0 ) ) ) |
| 24 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom I ) |
| 25 | 7 15 24 | 3syl | |- ( ph -> F e. Word dom I ) |
| 26 | 1 2 3 4 5 6 25 | upgrimwlklem1 | |- ( ph -> ( # ` E ) = ( # ` F ) ) |
| 27 | 26 | fveq2d | |- ( ph -> ( ( N o. P ) ` ( # ` E ) ) = ( ( N o. P ) ` ( # ` F ) ) ) |
| 28 | nn0fz0 | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
|
| 29 | 20 28 | sylib | |- ( ph -> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
| 30 | 18 29 | fvco3d | |- ( ph -> ( ( N o. P ) ` ( # ` F ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 31 | 27 30 | eqtrd | |- ( ph -> ( ( N o. P ) ` ( # ` E ) ) = ( N ` ( P ` ( # ` F ) ) ) ) |
| 32 | 14 23 31 | 3eqtr4d | |- ( ph -> ( ( N o. P ) ` 0 ) = ( ( N o. P ) ` ( # ` E ) ) ) |
| 33 | iscycl | |- ( E ( Cycles ` H ) ( N o. P ) <-> ( E ( Paths ` H ) ( N o. P ) /\ ( ( N o. P ) ` 0 ) = ( ( N o. P ) ` ( # ` E ) ) ) ) |
|
| 34 | 10 32 33 | sylanbrc | |- ( ph -> E ( Cycles ` H ) ( N o. P ) ) |