This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple path is a path (in an undirected graph). (Contributed by Alexander van der Vekens, 21-Oct-2017) (Revised by AV, 9-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | spthispth | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> F ( Trails ` G ) P ) |
|
| 2 | funres11 | |- ( Fun `' P -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
|
| 3 | 2 | adantl | |- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) ) |
| 4 | imain | |- ( Fun `' P -> ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) ) |
|
| 5 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 6 | 5 | oveq1i | |- ( 1 ..^ ( # ` F ) ) = ( ( 0 + 1 ) ..^ ( # ` F ) ) |
| 7 | 6 | ineq2i | |- ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) = ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) |
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | prinfzo0 | |- ( 0 e. ZZ -> ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) = (/) ) |
|
| 10 | 8 9 | ax-mp | |- ( { 0 , ( # ` F ) } i^i ( ( 0 + 1 ) ..^ ( # ` F ) ) ) = (/) |
| 11 | 7 10 | eqtri | |- ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) = (/) |
| 12 | 11 | imaeq2i | |- ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = ( P " (/) ) |
| 13 | ima0 | |- ( P " (/) ) = (/) |
|
| 14 | 12 13 | eqtri | |- ( P " ( { 0 , ( # ` F ) } i^i ( 1 ..^ ( # ` F ) ) ) ) = (/) |
| 15 | 4 14 | eqtr3di | |- ( Fun `' P -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
| 16 | 15 | adantl | |- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) |
| 17 | 1 3 16 | 3jca | |- ( ( F ( Trails ` G ) P /\ Fun `' P ) -> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
| 18 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 19 | ispth | |- ( F ( Paths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` F ) ) ) /\ ( ( P " { 0 , ( # ` F ) } ) i^i ( P " ( 1 ..^ ( # ` F ) ) ) ) = (/) ) ) |
|
| 20 | 17 18 19 | 3imtr4i | |- ( F ( SPaths ` G ) P -> F ( Paths ` G ) P ) |