This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | |- B = ( Base ` D ) |
|
| upfval.c | |- C = ( Base ` E ) |
||
| upfval.h | |- H = ( Hom ` D ) |
||
| upfval.j | |- J = ( Hom ` E ) |
||
| upfval.o | |- O = ( comp ` E ) |
||
| upfval2.w | |- ( ph -> W e. C ) |
||
| upfval3.f | |- ( ph -> F ( D Func E ) G ) |
||
| Assertion | upfval3 | |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | |- B = ( Base ` D ) |
|
| 2 | upfval.c | |- C = ( Base ` E ) |
|
| 3 | upfval.h | |- H = ( Hom ` D ) |
|
| 4 | upfval.j | |- J = ( Hom ` E ) |
|
| 5 | upfval.o | |- O = ( comp ` E ) |
|
| 6 | upfval2.w | |- ( ph -> W e. C ) |
|
| 7 | upfval3.f | |- ( ph -> F ( D Func E ) G ) |
|
| 8 | df-br | |- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
|
| 9 | 7 8 | sylib | |- ( ph -> <. F , G >. e. ( D Func E ) ) |
| 10 | 1 2 3 4 5 6 9 | upfval2 | |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } ) |
| 11 | relfunc | |- Rel ( D Func E ) |
|
| 12 | 11 | brrelex12i | |- ( F ( D Func E ) G -> ( F e. _V /\ G e. _V ) ) |
| 13 | op1stg | |- ( ( F e. _V /\ G e. _V ) -> ( 1st ` <. F , G >. ) = F ) |
|
| 14 | 12 13 | syl | |- ( F ( D Func E ) G -> ( 1st ` <. F , G >. ) = F ) |
| 15 | 14 | fveq1d | |- ( F ( D Func E ) G -> ( ( 1st ` <. F , G >. ) ` x ) = ( F ` x ) ) |
| 16 | 15 | oveq2d | |- ( F ( D Func E ) G -> ( W J ( ( 1st ` <. F , G >. ) ` x ) ) = ( W J ( F ` x ) ) ) |
| 17 | 16 | eleq2d | |- ( F ( D Func E ) G -> ( m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) <-> m e. ( W J ( F ` x ) ) ) ) |
| 18 | 17 | anbi2d | |- ( F ( D Func E ) G -> ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) <-> ( x e. B /\ m e. ( W J ( F ` x ) ) ) ) ) |
| 19 | 14 | fveq1d | |- ( F ( D Func E ) G -> ( ( 1st ` <. F , G >. ) ` y ) = ( F ` y ) ) |
| 20 | 19 | oveq2d | |- ( F ( D Func E ) G -> ( W J ( ( 1st ` <. F , G >. ) ` y ) ) = ( W J ( F ` y ) ) ) |
| 21 | 15 | opeq2d | |- ( F ( D Func E ) G -> <. W , ( ( 1st ` <. F , G >. ) ` x ) >. = <. W , ( F ` x ) >. ) |
| 22 | 21 19 | oveq12d | |- ( F ( D Func E ) G -> ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) = ( <. W , ( F ` x ) >. O ( F ` y ) ) ) |
| 23 | op2ndg | |- ( ( F e. _V /\ G e. _V ) -> ( 2nd ` <. F , G >. ) = G ) |
|
| 24 | 12 23 | syl | |- ( F ( D Func E ) G -> ( 2nd ` <. F , G >. ) = G ) |
| 25 | 24 | oveqd | |- ( F ( D Func E ) G -> ( x ( 2nd ` <. F , G >. ) y ) = ( x G y ) ) |
| 26 | 25 | fveq1d | |- ( F ( D Func E ) G -> ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) = ( ( x G y ) ` k ) ) |
| 27 | eqidd | |- ( F ( D Func E ) G -> m = m ) |
|
| 28 | 22 26 27 | oveq123d | |- ( F ( D Func E ) G -> ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) |
| 29 | 28 | eqeq2d | |- ( F ( D Func E ) G -> ( g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
| 30 | 29 | reubidv | |- ( F ( D Func E ) G -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
| 31 | 20 30 | raleqbidv | |- ( F ( D Func E ) G -> ( A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
| 32 | 31 | ralbidv | |- ( F ( D Func E ) G -> ( A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) |
| 33 | 18 32 | anbi12d | |- ( F ( D Func E ) G -> ( ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) ) ) |
| 34 | 33 | opabbidv | |- ( F ( D Func E ) G -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |
| 35 | 7 34 | syl | |- ( ph -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` <. F , G >. ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` <. F , G >. ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` <. F , G >. ) y ) ` k ) ( <. W , ( ( 1st ` <. F , G >. ) ` x ) >. O ( ( 1st ` <. F , G >. ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |
| 36 | 10 35 | eqtrd | |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |