This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| upfval.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| upfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| upfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| upfval.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | ||
| upfval2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | ||
| upfval3.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | ||
| Assertion | upfval3 | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | upfval.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | upfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | upfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | upfval.o | ⊢ 𝑂 = ( comp ‘ 𝐸 ) | |
| 6 | upfval2.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) | |
| 7 | upfval3.f | ⊢ ( 𝜑 → 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ) | |
| 8 | df-br | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐷 Func 𝐸 ) ) |
| 10 | 1 2 3 4 5 6 9 | upfval2 | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 11 | relfunc | ⊢ Rel ( 𝐷 Func 𝐸 ) | |
| 12 | 11 | brrelex12i | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ) |
| 13 | op1stg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐹 ) |
| 15 | 14 | fveq1d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 16 | 15 | oveq2d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) = ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ↔ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 18 | 17 | anbi2d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
| 19 | 14 | fveq1d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 20 | 19 | oveq2d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) = ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 15 | opeq2d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 = 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
| 22 | 21 19 | oveq12d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) = ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 | op2ndg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) | |
| 24 | 12 23 | syl | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) = 𝐺 ) |
| 25 | 24 | oveqd | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) = ( 𝑥 𝐺 𝑦 ) ) |
| 26 | 25 | fveq1d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) = ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ) |
| 27 | eqidd | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → 𝑚 = 𝑚 ) | |
| 28 | 22 26 27 | oveq123d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) |
| 29 | 28 | eqeq2d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 30 | 29 | reubidv | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 31 | 20 30 | raleqbidv | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 32 | 31 | ralbidv | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) |
| 33 | 18 32 | anbi12d | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) ) ) |
| 34 | 33 | opabbidv | ⊢ ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 → { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 35 | 7 34 | syl | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 ( 2nd ‘ 〈 𝐹 , 𝐺 〉 ) 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑥 ) 〉 𝑂 ( ( 1st ‘ 〈 𝐹 , 𝐺 〉 ) ‘ 𝑦 ) ) 𝑚 ) ) } = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |
| 36 | 10 35 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ( 𝐷 UP 𝐸 ) 𝑊 ) = { 〈 𝑥 , 𝑚 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑚 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑥 ) ) ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑊 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∃! 𝑘 ∈ ( 𝑥 𝐻 𝑦 ) 𝑔 = ( ( ( 𝑥 𝐺 𝑦 ) ‘ 𝑘 ) ( 〈 𝑊 , ( 𝐹 ‘ 𝑥 ) 〉 𝑂 ( 𝐹 ‘ 𝑦 ) ) 𝑚 ) ) } ) |