This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isup and other theorems. (Contributed by Zhi Wang, 25-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | |- B = ( Base ` D ) |
|
| upfval.c | |- C = ( Base ` E ) |
||
| upfval.h | |- H = ( Hom ` D ) |
||
| upfval.j | |- J = ( Hom ` E ) |
||
| upfval.o | |- O = ( comp ` E ) |
||
| upfval2.w | |- ( ph -> W e. C ) |
||
| upfval3.f | |- ( ph -> F ( D Func E ) G ) |
||
| Assertion | isuplem | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | |- B = ( Base ` D ) |
|
| 2 | upfval.c | |- C = ( Base ` E ) |
|
| 3 | upfval.h | |- H = ( Hom ` D ) |
|
| 4 | upfval.j | |- J = ( Hom ` E ) |
|
| 5 | upfval.o | |- O = ( comp ` E ) |
|
| 6 | upfval2.w | |- ( ph -> W e. C ) |
|
| 7 | upfval3.f | |- ( ph -> F ( D Func E ) G ) |
|
| 8 | 1 2 3 4 5 6 7 | upfval3 | |- ( ph -> ( <. F , G >. ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( F ` x ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) ) } ) |
| 9 | oveq1 | |- ( x = X -> ( x H y ) = ( X H y ) ) |
|
| 10 | fveq2 | |- ( x = X -> ( F ` x ) = ( F ` X ) ) |
|
| 11 | 10 | opeq2d | |- ( x = X -> <. W , ( F ` x ) >. = <. W , ( F ` X ) >. ) |
| 12 | 11 | oveq1d | |- ( x = X -> ( <. W , ( F ` x ) >. O ( F ` y ) ) = ( <. W , ( F ` X ) >. O ( F ` y ) ) ) |
| 13 | oveq1 | |- ( x = X -> ( x G y ) = ( X G y ) ) |
|
| 14 | 13 | fveq1d | |- ( x = X -> ( ( x G y ) ` k ) = ( ( X G y ) ` k ) ) |
| 15 | eqidd | |- ( x = X -> m = m ) |
|
| 16 | 12 14 15 | oveq123d | |- ( x = X -> ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) ) |
| 17 | 16 | eqeq2d | |- ( x = X -> ( g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) <-> g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) ) ) |
| 18 | 9 17 | reueqbidv | |- ( x = X -> ( E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) <-> E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) ) ) |
| 19 | 18 | 2ralbidv | |- ( x = X -> ( A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( x H y ) g = ( ( ( x G y ) ` k ) ( <. W , ( F ` x ) >. O ( F ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) ) ) |
| 20 | oveq2 | |- ( m = M -> ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) |
|
| 21 | 20 | eqeq2d | |- ( m = M -> ( g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) <-> g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |
| 22 | 21 | reubidv | |- ( m = M -> ( E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) <-> E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |
| 23 | 22 | 2ralbidv | |- ( m = M -> ( A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) |
| 24 | eqidd | |- ( ( x = X /\ m = M ) -> B = B ) |
|
| 25 | simpl | |- ( ( x = X /\ m = M ) -> x = X ) |
|
| 26 | 25 | fveq2d | |- ( ( x = X /\ m = M ) -> ( F ` x ) = ( F ` X ) ) |
| 27 | 26 | oveq2d | |- ( ( x = X /\ m = M ) -> ( W J ( F ` x ) ) = ( W J ( F ` X ) ) ) |
| 28 | 8 19 23 24 27 | brab2ddw | |- ( ph -> ( X ( <. F , G >. ( D UP E ) W ) M <-> ( ( X e. B /\ M e. ( W J ( F ` X ) ) ) /\ A. y e. B A. g e. ( W J ( F ` y ) ) E! k e. ( X H y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. O ( F ` y ) ) M ) ) ) ) |