This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the class of universal properties. (Contributed by Zhi Wang, 24-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upfval.b | |- B = ( Base ` D ) |
|
| upfval.c | |- C = ( Base ` E ) |
||
| upfval.h | |- H = ( Hom ` D ) |
||
| upfval.j | |- J = ( Hom ` E ) |
||
| upfval.o | |- O = ( comp ` E ) |
||
| upfval2.w | |- ( ph -> W e. C ) |
||
| upfval2.f | |- ( ph -> F e. ( D Func E ) ) |
||
| Assertion | upfval2 | |- ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upfval.b | |- B = ( Base ` D ) |
|
| 2 | upfval.c | |- C = ( Base ` E ) |
|
| 3 | upfval.h | |- H = ( Hom ` D ) |
|
| 4 | upfval.j | |- J = ( Hom ` E ) |
|
| 5 | upfval.o | |- O = ( comp ` E ) |
|
| 6 | upfval2.w | |- ( ph -> W e. C ) |
|
| 7 | upfval2.f | |- ( ph -> F e. ( D Func E ) ) |
|
| 8 | anass | |- ( ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) <-> ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) ) |
|
| 9 | 8 | opabbii | |- { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } = { <. x , m >. | ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) } |
| 10 | 1 | fvexi | |- B e. _V |
| 11 | 10 | a1i | |- ( ph -> B e. _V ) |
| 12 | simprl | |- ( ( ( ph /\ x e. B ) /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) -> m e. ( W J ( ( 1st ` F ) ` x ) ) ) |
|
| 13 | ovexd | |- ( ( ph /\ x e. B ) -> ( W J ( ( 1st ` F ) ` x ) ) e. _V ) |
|
| 14 | 12 13 | abexd | |- ( ( ph /\ x e. B ) -> { m | ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) |
| 15 | 11 14 | opabex3d | |- ( ph -> { <. x , m >. | ( x e. B /\ ( m e. ( W J ( ( 1st ` F ) ` x ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) } e. _V ) |
| 16 | 9 15 | eqeltrid | |- ( ph -> { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) |
| 17 | fveq2 | |- ( f = F -> ( 1st ` f ) = ( 1st ` F ) ) |
|
| 18 | 17 | fveq1d | |- ( f = F -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 19 | 18 | oveq2d | |- ( f = F -> ( w J ( ( 1st ` f ) ` x ) ) = ( w J ( ( 1st ` F ) ` x ) ) ) |
| 20 | 19 | eleq2d | |- ( f = F -> ( m e. ( w J ( ( 1st ` f ) ` x ) ) <-> m e. ( w J ( ( 1st ` F ) ` x ) ) ) ) |
| 21 | 20 | anbi2d | |- ( f = F -> ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) <-> ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) ) ) |
| 22 | 17 | fveq1d | |- ( f = F -> ( ( 1st ` f ) ` y ) = ( ( 1st ` F ) ` y ) ) |
| 23 | 22 | oveq2d | |- ( f = F -> ( w J ( ( 1st ` f ) ` y ) ) = ( w J ( ( 1st ` F ) ` y ) ) ) |
| 24 | 18 | opeq2d | |- ( f = F -> <. w , ( ( 1st ` f ) ` x ) >. = <. w , ( ( 1st ` F ) ` x ) >. ) |
| 25 | 24 22 | oveq12d | |- ( f = F -> ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) = ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) ) |
| 26 | fveq2 | |- ( f = F -> ( 2nd ` f ) = ( 2nd ` F ) ) |
|
| 27 | 26 | oveqd | |- ( f = F -> ( x ( 2nd ` f ) y ) = ( x ( 2nd ` F ) y ) ) |
| 28 | 27 | fveq1d | |- ( f = F -> ( ( x ( 2nd ` f ) y ) ` k ) = ( ( x ( 2nd ` F ) y ) ` k ) ) |
| 29 | eqidd | |- ( f = F -> m = m ) |
|
| 30 | 25 28 29 | oveq123d | |- ( f = F -> ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) |
| 31 | 30 | eqeq2d | |- ( f = F -> ( g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 32 | 31 | reubidv | |- ( f = F -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 33 | 23 32 | raleqbidv | |- ( f = F -> ( A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 34 | 33 | ralbidv | |- ( f = F -> ( A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) <-> A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 35 | 21 34 | anbi12d | |- ( f = F -> ( ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) ) |
| 36 | 35 | opabbidv | |- ( f = F -> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
| 37 | oveq1 | |- ( w = W -> ( w J ( ( 1st ` F ) ` x ) ) = ( W J ( ( 1st ` F ) ` x ) ) ) |
|
| 38 | 37 | eleq2d | |- ( w = W -> ( m e. ( w J ( ( 1st ` F ) ` x ) ) <-> m e. ( W J ( ( 1st ` F ) ` x ) ) ) ) |
| 39 | 38 | anbi2d | |- ( w = W -> ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) <-> ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) ) ) |
| 40 | oveq1 | |- ( w = W -> ( w J ( ( 1st ` F ) ` y ) ) = ( W J ( ( 1st ` F ) ` y ) ) ) |
|
| 41 | opeq1 | |- ( w = W -> <. w , ( ( 1st ` F ) ` x ) >. = <. W , ( ( 1st ` F ) ` x ) >. ) |
|
| 42 | 41 | oveq1d | |- ( w = W -> ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) = ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) ) |
| 43 | 42 | oveqd | |- ( w = W -> ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) |
| 44 | 43 | eqeq2d | |- ( w = W -> ( g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 45 | 44 | reubidv | |- ( w = W -> ( E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 46 | 40 45 | raleqbidv | |- ( w = W -> ( A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 47 | 46 | ralbidv | |- ( w = W -> ( A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) <-> A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) |
| 48 | 39 47 | anbi12d | |- ( w = W -> ( ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) <-> ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) ) ) |
| 49 | 48 | opabbidv | |- ( w = W -> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. w , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
| 50 | 1 2 3 4 5 | upfval | |- ( D UP E ) = ( f e. ( D Func E ) , w e. C |-> { <. x , m >. | ( ( x e. B /\ m e. ( w J ( ( 1st ` f ) ` x ) ) ) /\ A. y e. B A. g e. ( w J ( ( 1st ` f ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` f ) y ) ` k ) ( <. w , ( ( 1st ` f ) ` x ) >. O ( ( 1st ` f ) ` y ) ) m ) ) } ) |
| 51 | 36 49 50 | ovmpog | |- ( ( F e. ( D Func E ) /\ W e. C /\ { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } e. _V ) -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |
| 52 | 7 6 16 51 | syl3anc | |- ( ph -> ( F ( D UP E ) W ) = { <. x , m >. | ( ( x e. B /\ m e. ( W J ( ( 1st ` F ) ` x ) ) ) /\ A. y e. B A. g e. ( W J ( ( 1st ` F ) ` y ) ) E! k e. ( x H y ) g = ( ( ( x ( 2nd ` F ) y ) ` k ) ( <. W , ( ( 1st ` F ) ` x ) >. O ( ( 1st ` F ) ` y ) ) m ) ) } ) |