This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A fully faithful functor generates equal sets of universal objects. (Contributed by Zhi Wang, 19-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobffth.b | |- B = ( Base ` D ) |
|
| uobffth.x | |- ( ph -> X e. B ) |
||
| uobffth.f | |- ( ph -> F e. ( C Func D ) ) |
||
| uobffth.g | |- ( ph -> ( K o.func F ) = G ) |
||
| uobffth.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
||
| uobffth.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
||
| Assertion | uobffth | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobffth.b | |- B = ( Base ` D ) |
|
| 2 | uobffth.x | |- ( ph -> X e. B ) |
|
| 3 | uobffth.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 4 | uobffth.g | |- ( ph -> ( K o.func F ) = G ) |
|
| 5 | uobffth.y | |- ( ph -> ( ( 1st ` K ) ` X ) = Y ) |
|
| 6 | uobffth.k | |- ( ph -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
|
| 7 | 19.42v | |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) <-> ( ph /\ E. m z ( F ( C UP D ) X ) m ) ) |
|
| 8 | fvexd | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) e. _V ) |
|
| 9 | 5 | adantr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 10 | 6 | adantr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 11 | 4 | adantr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( K o.func F ) = G ) |
| 12 | eqidd | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
|
| 13 | simpr | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( F ( C UP D ) X ) m ) |
|
| 14 | 9 10 11 12 13 | uptrai | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) |
| 15 | breq2 | |- ( n = ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) -> ( z ( G ( C UP E ) Y ) n <-> z ( G ( C UP E ) Y ) ( ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` m ) ) ) |
|
| 16 | 8 14 15 | spcedv | |- ( ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 17 | 16 | exlimiv | |- ( E. m ( ph /\ z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 18 | 7 17 | sylbir | |- ( ( ph /\ E. m z ( F ( C UP D ) X ) m ) -> E. n z ( G ( C UP E ) Y ) n ) |
| 19 | 19.42v | |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) <-> ( ph /\ E. n z ( G ( C UP E ) Y ) n ) ) |
|
| 20 | fvexd | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) e. _V ) |
|
| 21 | 5 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( ( 1st ` K ) ` X ) = Y ) |
| 22 | 6 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> K e. ( ( D Full E ) i^i ( D Faith E ) ) ) |
| 23 | 4 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( K o.func F ) = G ) |
| 24 | 2 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> X e. B ) |
| 25 | 3 | adantr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> F e. ( C Func D ) ) |
| 26 | eqidd | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) |
|
| 27 | simpr | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( G ( C UP E ) Y ) n ) |
|
| 28 | 21 22 23 1 24 25 26 27 | uptrar | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) |
| 29 | breq2 | |- ( m = ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) -> ( z ( F ( C UP D ) X ) m <-> z ( F ( C UP D ) X ) ( `' ( X ( 2nd ` K ) ( ( 1st ` F ) ` z ) ) ` n ) ) ) |
|
| 30 | 20 28 29 | spcedv | |- ( ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 31 | 30 | exlimiv | |- ( E. n ( ph /\ z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 32 | 19 31 | sylbir | |- ( ( ph /\ E. n z ( G ( C UP E ) Y ) n ) -> E. m z ( F ( C UP D ) X ) m ) |
| 33 | 18 32 | impbida | |- ( ph -> ( E. m z ( F ( C UP D ) X ) m <-> E. n z ( G ( C UP E ) Y ) n ) ) |
| 34 | relup | |- Rel ( F ( C UP D ) X ) |
|
| 35 | releldmb | |- ( Rel ( F ( C UP D ) X ) -> ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) ) |
|
| 36 | 34 35 | ax-mp | |- ( z e. dom ( F ( C UP D ) X ) <-> E. m z ( F ( C UP D ) X ) m ) |
| 37 | relup | |- Rel ( G ( C UP E ) Y ) |
|
| 38 | releldmb | |- ( Rel ( G ( C UP E ) Y ) -> ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) ) |
|
| 39 | 37 38 | ax-mp | |- ( z e. dom ( G ( C UP E ) Y ) <-> E. n z ( G ( C UP E ) Y ) n ) |
| 40 | 33 36 39 | 3bitr4g | |- ( ph -> ( z e. dom ( F ( C UP D ) X ) <-> z e. dom ( G ( C UP E ) Y ) ) ) |
| 41 | 40 | eqrdv | |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) |