This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 13-Jan-2013) (Proof shortened by Mario Carneiro, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unxpdom | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 3 | 1 | brrelex2i | |- ( 1o ~< B -> B e. _V ) |
| 4 | 2 3 | anim12i | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( A e. _V /\ B e. _V ) ) |
| 5 | breq2 | |- ( x = A -> ( 1o ~< x <-> 1o ~< A ) ) |
|
| 6 | 5 | anbi1d | |- ( x = A -> ( ( 1o ~< x /\ 1o ~< y ) <-> ( 1o ~< A /\ 1o ~< y ) ) ) |
| 7 | uneq1 | |- ( x = A -> ( x u. y ) = ( A u. y ) ) |
|
| 8 | xpeq1 | |- ( x = A -> ( x X. y ) = ( A X. y ) ) |
|
| 9 | 7 8 | breq12d | |- ( x = A -> ( ( x u. y ) ~<_ ( x X. y ) <-> ( A u. y ) ~<_ ( A X. y ) ) ) |
| 10 | 6 9 | imbi12d | |- ( x = A -> ( ( ( 1o ~< x /\ 1o ~< y ) -> ( x u. y ) ~<_ ( x X. y ) ) <-> ( ( 1o ~< A /\ 1o ~< y ) -> ( A u. y ) ~<_ ( A X. y ) ) ) ) |
| 11 | breq2 | |- ( y = B -> ( 1o ~< y <-> 1o ~< B ) ) |
|
| 12 | 11 | anbi2d | |- ( y = B -> ( ( 1o ~< A /\ 1o ~< y ) <-> ( 1o ~< A /\ 1o ~< B ) ) ) |
| 13 | uneq2 | |- ( y = B -> ( A u. y ) = ( A u. B ) ) |
|
| 14 | xpeq2 | |- ( y = B -> ( A X. y ) = ( A X. B ) ) |
|
| 15 | 13 14 | breq12d | |- ( y = B -> ( ( A u. y ) ~<_ ( A X. y ) <-> ( A u. B ) ~<_ ( A X. B ) ) ) |
| 16 | 12 15 | imbi12d | |- ( y = B -> ( ( ( 1o ~< A /\ 1o ~< y ) -> ( A u. y ) ~<_ ( A X. y ) ) <-> ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) ) ) |
| 17 | eqid | |- ( z e. ( x u. y ) |-> if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) ) = ( z e. ( x u. y ) |-> if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) ) |
|
| 18 | eqid | |- if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) = if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) |
|
| 19 | 17 18 | unxpdomlem3 | |- ( ( 1o ~< x /\ 1o ~< y ) -> ( x u. y ) ~<_ ( x X. y ) ) |
| 20 | 10 16 19 | vtocl2g | |- ( ( A e. _V /\ B e. _V ) -> ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) ) |
| 21 | 4 20 | mpcom | |- ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) |