This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitdvcl.o | |- U = ( Unit ` R ) |
|
| unitdvcl.d | |- ./ = ( /r ` R ) |
||
| Assertion | unitdvcl | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ./ Y ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitdvcl.o | |- U = ( Unit ` R ) |
|
| 2 | unitdvcl.d | |- ./ = ( /r ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 1 | unitcl | |- ( X e. U -> X e. ( Base ` R ) ) |
| 5 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 6 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 7 | 3 5 1 6 2 | dvrval | |- ( ( X e. ( Base ` R ) /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 8 | 4 7 | sylan | |- ( ( X e. U /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 9 | 8 | 3adant1 | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ./ Y ) = ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) ) |
| 10 | 1 6 | unitinvcl | |- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
| 11 | 10 | 3adant2 | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
| 12 | 1 5 | unitmulcl | |- ( ( R e. Ring /\ X e. U /\ ( ( invr ` R ) ` Y ) e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. U ) |
| 13 | 11 12 | syld3an3 | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ( .r ` R ) ( ( invr ` R ) ` Y ) ) e. U ) |
| 14 | 9 13 | eqeltrd | |- ( ( R e. Ring /\ X e. U /\ Y e. U ) -> ( X ./ Y ) e. U ) |