This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uneqin | |- ( ( A u. B ) = ( A i^i B ) <-> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss | |- ( ( A u. B ) = ( A i^i B ) -> ( A u. B ) C_ ( A i^i B ) ) |
|
| 2 | unss | |- ( ( A C_ ( A i^i B ) /\ B C_ ( A i^i B ) ) <-> ( A u. B ) C_ ( A i^i B ) ) |
|
| 3 | ssin | |- ( ( A C_ A /\ A C_ B ) <-> A C_ ( A i^i B ) ) |
|
| 4 | sstr | |- ( ( A C_ A /\ A C_ B ) -> A C_ B ) |
|
| 5 | 3 4 | sylbir | |- ( A C_ ( A i^i B ) -> A C_ B ) |
| 6 | ssin | |- ( ( B C_ A /\ B C_ B ) <-> B C_ ( A i^i B ) ) |
|
| 7 | simpl | |- ( ( B C_ A /\ B C_ B ) -> B C_ A ) |
|
| 8 | 6 7 | sylbir | |- ( B C_ ( A i^i B ) -> B C_ A ) |
| 9 | 5 8 | anim12i | |- ( ( A C_ ( A i^i B ) /\ B C_ ( A i^i B ) ) -> ( A C_ B /\ B C_ A ) ) |
| 10 | 2 9 | sylbir | |- ( ( A u. B ) C_ ( A i^i B ) -> ( A C_ B /\ B C_ A ) ) |
| 11 | 1 10 | syl | |- ( ( A u. B ) = ( A i^i B ) -> ( A C_ B /\ B C_ A ) ) |
| 12 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
| 13 | 11 12 | sylibr | |- ( ( A u. B ) = ( A i^i B ) -> A = B ) |
| 14 | unidm | |- ( A u. A ) = A |
|
| 15 | inidm | |- ( A i^i A ) = A |
|
| 16 | 14 15 | eqtr4i | |- ( A u. A ) = ( A i^i A ) |
| 17 | uneq2 | |- ( A = B -> ( A u. A ) = ( A u. B ) ) |
|
| 18 | ineq2 | |- ( A = B -> ( A i^i A ) = ( A i^i B ) ) |
|
| 19 | 16 17 18 | 3eqtr3a | |- ( A = B -> ( A u. B ) = ( A i^i B ) ) |
| 20 | 13 19 | impbii | |- ( ( A u. B ) = ( A i^i B ) <-> A = B ) |