This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a multigraph (see uhgrspan1 ) is a multigraph. (Contributed by AV, 27-Nov-2020) (Revised by AV, 19-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrres.v | |- V = ( Vtx ` G ) |
|
| upgrres.e | |- E = ( iEdg ` G ) |
||
| upgrres.f | |- F = { i e. dom E | N e/ ( E ` i ) } |
||
| upgrres.s | |- S = <. ( V \ { N } ) , ( E |` F ) >. |
||
| Assertion | umgrres | |- ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrres.v | |- V = ( Vtx ` G ) |
|
| 2 | upgrres.e | |- E = ( iEdg ` G ) |
|
| 3 | upgrres.f | |- F = { i e. dom E | N e/ ( E ` i ) } |
|
| 4 | upgrres.s | |- S = <. ( V \ { N } ) , ( E |` F ) >. |
|
| 5 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 6 | 2 | uhgrfun | |- ( G e. UHGraph -> Fun E ) |
| 7 | funres | |- ( Fun E -> Fun ( E |` F ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( G e. UMGraph -> Fun ( E |` F ) ) |
| 9 | 8 | funfnd | |- ( G e. UMGraph -> ( E |` F ) Fn dom ( E |` F ) ) |
| 10 | 9 | adantr | |- ( ( G e. UMGraph /\ N e. V ) -> ( E |` F ) Fn dom ( E |` F ) ) |
| 11 | 1 2 3 | umgrreslem | |- ( ( G e. UMGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 12 | df-f | |- ( ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } <-> ( ( E |` F ) Fn dom ( E |` F ) /\ ran ( E |` F ) C_ { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
|
| 13 | 10 11 12 | sylanbrc | |- ( ( G e. UMGraph /\ N e. V ) -> ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) |
| 14 | opex | |- <. ( V \ { N } ) , ( E |` F ) >. e. _V |
|
| 15 | 4 14 | eqeltri | |- S e. _V |
| 16 | 1 2 3 4 | uhgrspan1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| 17 | 16 | eqcomi | |- ( V \ { N } ) = ( Vtx ` S ) |
| 18 | 1 2 3 4 | uhgrspan1lem3 | |- ( iEdg ` S ) = ( E |` F ) |
| 19 | 18 | eqcomi | |- ( E |` F ) = ( iEdg ` S ) |
| 20 | 17 19 | isumgrs | |- ( S e. _V -> ( S e. UMGraph <-> ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 21 | 15 20 | mp1i | |- ( ( G e. UMGraph /\ N e. V ) -> ( S e. UMGraph <-> ( E |` F ) : dom ( E |` F ) --> { p e. ~P ( V \ { N } ) | ( # ` p ) = 2 } ) ) |
| 22 | 13 21 | mpbird | |- ( ( G e. UMGraph /\ N e. V ) -> S e. UMGraph ) |