This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumgr.v | |- V = ( Vtx ` G ) |
|
| isumgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | isumgrs | |- ( G e. U -> ( G e. UMGraph <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isumgr.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | isumgr | |- ( G e. U -> ( G e. UMGraph <-> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } ) ) |
| 4 | prprrab | |- { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } |
|
| 5 | 4 | a1i | |- ( G e. U -> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
| 6 | 5 | feq3d | |- ( G e. U -> ( E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) = 2 } <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 7 | 3 6 | bitrd | |- ( G e. U -> ( G e. UMGraph <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) ) |