This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| Assertion | umgr2v2enb1 | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( G NeighbVtx A ) = { B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| 2 | 1 | umgr2v2e | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> G e. UMGraph ) |
| 3 | 1 | umgr2v2evtxel | |- ( ( V e. W /\ A e. V ) -> A e. ( Vtx ` G ) ) |
| 4 | 3 | 3adant3 | |- ( ( V e. W /\ A e. V /\ B e. V ) -> A e. ( Vtx ` G ) ) |
| 5 | 4 | adantr | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> A e. ( Vtx ` G ) ) |
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 8 | 6 7 | nbumgrvtx | |- ( ( G e. UMGraph /\ A e. ( Vtx ` G ) ) -> ( G NeighbVtx A ) = { x e. ( Vtx ` G ) | { A , x } e. ( Edg ` G ) } ) |
| 9 | 2 5 8 | syl2anc | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( G NeighbVtx A ) = { x e. ( Vtx ` G ) | { A , x } e. ( Edg ` G ) } ) |
| 10 | 1 | umgr2v2eedg | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( Edg ` G ) = { { A , B } } ) |
| 11 | 10 | eleq2d | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( { A , x } e. ( Edg ` G ) <-> { A , x } e. { { A , B } } ) ) |
| 12 | 11 | adantr | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( { A , x } e. ( Edg ` G ) <-> { A , x } e. { { A , B } } ) ) |
| 13 | 12 | adantr | |- ( ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) /\ x e. ( Vtx ` G ) ) -> ( { A , x } e. ( Edg ` G ) <-> { A , x } e. { { A , B } } ) ) |
| 14 | prex | |- { A , x } e. _V |
|
| 15 | 14 | elsn | |- ( { A , x } e. { { A , B } } <-> { A , x } = { A , B } ) |
| 16 | 13 15 | bitrdi | |- ( ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) /\ x e. ( Vtx ` G ) ) -> ( { A , x } e. ( Edg ` G ) <-> { A , x } = { A , B } ) ) |
| 17 | simpr | |- ( ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) /\ x e. ( Vtx ` G ) ) -> x e. ( Vtx ` G ) ) |
|
| 18 | simpll3 | |- ( ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) /\ x e. ( Vtx ` G ) ) -> B e. V ) |
|
| 19 | 17 18 | preq2b | |- ( ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) /\ x e. ( Vtx ` G ) ) -> ( { A , x } = { A , B } <-> x = B ) ) |
| 20 | 16 19 | bitrd | |- ( ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) /\ x e. ( Vtx ` G ) ) -> ( { A , x } e. ( Edg ` G ) <-> x = B ) ) |
| 21 | 20 | pm5.32da | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( ( x e. ( Vtx ` G ) /\ { A , x } e. ( Edg ` G ) ) <-> ( x e. ( Vtx ` G ) /\ x = B ) ) ) |
| 22 | 1 | umgr2v2evtx | |- ( V e. W -> ( Vtx ` G ) = V ) |
| 23 | 22 | 3ad2ant1 | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( Vtx ` G ) = V ) |
| 24 | eleq12 | |- ( ( x = B /\ ( Vtx ` G ) = V ) -> ( x e. ( Vtx ` G ) <-> B e. V ) ) |
|
| 25 | 24 | exbiri | |- ( x = B -> ( ( Vtx ` G ) = V -> ( B e. V -> x e. ( Vtx ` G ) ) ) ) |
| 26 | 25 | com13 | |- ( B e. V -> ( ( Vtx ` G ) = V -> ( x = B -> x e. ( Vtx ` G ) ) ) ) |
| 27 | 26 | 3ad2ant3 | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( ( Vtx ` G ) = V -> ( x = B -> x e. ( Vtx ` G ) ) ) ) |
| 28 | 23 27 | mpd | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( x = B -> x e. ( Vtx ` G ) ) ) |
| 29 | 28 | adantr | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( x = B -> x e. ( Vtx ` G ) ) ) |
| 30 | 29 | pm4.71rd | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( x = B <-> ( x e. ( Vtx ` G ) /\ x = B ) ) ) |
| 31 | 21 30 | bitr4d | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( ( x e. ( Vtx ` G ) /\ { A , x } e. ( Edg ` G ) ) <-> x = B ) ) |
| 32 | 31 | alrimiv | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> A. x ( ( x e. ( Vtx ` G ) /\ { A , x } e. ( Edg ` G ) ) <-> x = B ) ) |
| 33 | rabeqsn | |- ( { x e. ( Vtx ` G ) | { A , x } e. ( Edg ` G ) } = { B } <-> A. x ( ( x e. ( Vtx ` G ) /\ { A , x } e. ( Edg ` G ) ) <-> x = B ) ) |
|
| 34 | 32 33 | sylibr | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> { x e. ( Vtx ` G ) | { A , x } e. ( Edg ` G ) } = { B } ) |
| 35 | 9 34 | eqtrd | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( G NeighbVtx A ) = { B } ) |