This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has one neighbor. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgr2v2evtx.g | ⊢ 𝐺 = 〈 𝑉 , { 〈 0 , { 𝐴 , 𝐵 } 〉 , 〈 1 , { 𝐴 , 𝐵 } 〉 } 〉 | |
| Assertion | umgr2v2enb1 | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2v2evtx.g | ⊢ 𝐺 = 〈 𝑉 , { 〈 0 , { 𝐴 , 𝐵 } 〉 , 〈 1 , { 𝐴 , 𝐵 } 〉 } 〉 | |
| 2 | 1 | umgr2v2e | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ UMGraph ) |
| 3 | 1 | umgr2v2evtxel | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 8 | 6 7 | nbumgrvtx | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 9 | 2 5 8 | syl2anc | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } ) |
| 10 | 1 | umgr2v2eedg | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Edg ‘ 𝐺 ) = { { 𝐴 , 𝐵 } } ) |
| 11 | 10 | eleq2d | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ) ) |
| 14 | prex | ⊢ { 𝐴 , 𝑥 } ∈ V | |
| 15 | 14 | elsn | ⊢ ( { 𝐴 , 𝑥 } ∈ { { 𝐴 , 𝐵 } } ↔ { 𝐴 , 𝑥 } = { 𝐴 , 𝐵 } ) |
| 16 | 13 15 | bitrdi | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝐴 , 𝑥 } = { 𝐴 , 𝐵 } ) ) |
| 17 | simpr | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 18 | simpll3 | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → 𝐵 ∈ 𝑉 ) | |
| 19 | 17 18 | preq2b | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } = { 𝐴 , 𝐵 } ↔ 𝑥 = 𝐵 ) ) |
| 20 | 16 19 | bitrd | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ↔ 𝑥 = 𝐵 ) ) |
| 21 | 20 | pm5.32da | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 22 | 1 | umgr2v2evtx | ⊢ ( 𝑉 ∈ 𝑊 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| 24 | eleq12 | ⊢ ( ( 𝑥 = 𝐵 ∧ ( Vtx ‘ 𝐺 ) = 𝑉 ) → ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝐵 ∈ 𝑉 ) ) | |
| 25 | 24 | exbiri | ⊢ ( 𝑥 = 𝐵 → ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( 𝐵 ∈ 𝑉 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 26 | 25 | com13 | ⊢ ( 𝐵 ∈ 𝑉 → ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( Vtx ‘ 𝐺 ) = 𝑉 → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) ) |
| 28 | 23 27 | mpd | ⊢ ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 = 𝐵 → 𝑥 ∈ ( Vtx ‘ 𝐺 ) ) ) |
| 30 | 29 | pm4.71rd | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 = 𝐵 ↔ ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑥 = 𝐵 ) ) ) |
| 31 | 21 30 | bitr4d | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ 𝑥 = 𝐵 ) ) |
| 32 | 31 | alrimiv | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ 𝑥 = 𝐵 ) ) |
| 33 | rabeqsn | ⊢ ( { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } = { 𝐵 } ↔ ∀ 𝑥 ( ( 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ↔ 𝑥 = 𝐵 ) ) | |
| 34 | 32 33 | sylibr | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → { 𝑥 ∈ ( Vtx ‘ 𝐺 ) ∣ { 𝐴 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) } = { 𝐵 } ) |
| 35 | 9 34 | eqtrd | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐺 NeighbVtx 𝐴 ) = { 𝐵 } ) |