This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph with two edges connecting the same two vertices, each of the vertices has degree 2. (Contributed by AV, 18-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| Assertion | umgr2v2evd2 | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( ( VtxDeg ` G ) ` A ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| 2 | 1 | umgr2v2e | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> G e. UMGraph ) |
| 3 | 1 | umgr2v2evtxel | |- ( ( V e. W /\ A e. V ) -> A e. ( Vtx ` G ) ) |
| 4 | 3 | 3adant3 | |- ( ( V e. W /\ A e. V /\ B e. V ) -> A e. ( Vtx ` G ) ) |
| 5 | 4 | adantr | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> A e. ( Vtx ` G ) ) |
| 6 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 7 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 8 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 9 | eqid | |- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
|
| 10 | 6 7 8 9 | vtxdumgrval | |- ( ( G e. UMGraph /\ A e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` A ) = ( # ` { x e. dom ( iEdg ` G ) | A e. ( ( iEdg ` G ) ` x ) } ) ) |
| 11 | 2 5 10 | syl2anc | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( ( VtxDeg ` G ) ` A ) = ( # ` { x e. dom ( iEdg ` G ) | A e. ( ( iEdg ` G ) ` x ) } ) ) |
| 12 | 1 | umgr2v2eiedg | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( iEdg ` G ) = { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
| 13 | 12 | dmeqd | |- ( ( V e. W /\ A e. V /\ B e. V ) -> dom ( iEdg ` G ) = dom { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
| 14 | prex | |- { A , B } e. _V |
|
| 15 | 14 14 | dmprop | |- dom { <. 0 , { A , B } >. , <. 1 , { A , B } >. } = { 0 , 1 } |
| 16 | 13 15 | eqtrdi | |- ( ( V e. W /\ A e. V /\ B e. V ) -> dom ( iEdg ` G ) = { 0 , 1 } ) |
| 17 | 12 | fveq1d | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( ( iEdg ` G ) ` x ) = ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) ) |
| 18 | 17 | eleq2d | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( A e. ( ( iEdg ` G ) ` x ) <-> A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) ) ) |
| 19 | 16 18 | rabeqbidv | |- ( ( V e. W /\ A e. V /\ B e. V ) -> { x e. dom ( iEdg ` G ) | A e. ( ( iEdg ` G ) ` x ) } = { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } ) |
| 20 | 19 | fveq2d | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | A e. ( ( iEdg ` G ) ` x ) } ) = ( # ` { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } ) ) |
| 21 | prid1g | |- ( A e. V -> A e. { A , B } ) |
|
| 22 | 0ne1 | |- 0 =/= 1 |
|
| 23 | c0ex | |- 0 e. _V |
|
| 24 | 23 14 | fvpr1 | |- ( 0 =/= 1 -> ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 0 ) = { A , B } ) |
| 25 | 22 24 | ax-mp | |- ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 0 ) = { A , B } |
| 26 | 21 25 | eleqtrrdi | |- ( A e. V -> A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 0 ) ) |
| 27 | 1ex | |- 1 e. _V |
|
| 28 | 27 14 | fvpr2 | |- ( 0 =/= 1 -> ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 1 ) = { A , B } ) |
| 29 | 22 28 | ax-mp | |- ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 1 ) = { A , B } |
| 30 | 21 29 | eleqtrrdi | |- ( A e. V -> A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 1 ) ) |
| 31 | fveq2 | |- ( x = 0 -> ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) = ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 0 ) ) |
|
| 32 | 31 | eleq2d | |- ( x = 0 -> ( A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) <-> A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 0 ) ) ) |
| 33 | fveq2 | |- ( x = 1 -> ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) = ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 1 ) ) |
|
| 34 | 33 | eleq2d | |- ( x = 1 -> ( A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) <-> A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 1 ) ) ) |
| 35 | 23 27 32 34 | ralpr | |- ( A. x e. { 0 , 1 } A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) <-> ( A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 0 ) /\ A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` 1 ) ) ) |
| 36 | 26 30 35 | sylanbrc | |- ( A e. V -> A. x e. { 0 , 1 } A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) ) |
| 37 | rabid2 | |- ( { 0 , 1 } = { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } <-> A. x e. { 0 , 1 } A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) ) |
|
| 38 | 36 37 | sylibr | |- ( A e. V -> { 0 , 1 } = { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } ) |
| 39 | 38 | eqcomd | |- ( A e. V -> { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } = { 0 , 1 } ) |
| 40 | 39 | fveq2d | |- ( A e. V -> ( # ` { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } ) = ( # ` { 0 , 1 } ) ) |
| 41 | prhash2ex | |- ( # ` { 0 , 1 } ) = 2 |
|
| 42 | 40 41 | eqtrdi | |- ( A e. V -> ( # ` { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } ) = 2 ) |
| 43 | 42 | 3ad2ant2 | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( # ` { x e. { 0 , 1 } | A e. ( { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ` x ) } ) = 2 ) |
| 44 | 20 43 | eqtrd | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | A e. ( ( iEdg ` G ) ` x ) } ) = 2 ) |
| 45 | 44 | adantr | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( # ` { x e. dom ( iEdg ` G ) | A e. ( ( iEdg ` G ) ` x ) } ) = 2 ) |
| 46 | 11 45 | eqtrd | |- ( ( ( V e. W /\ A e. V /\ B e. V ) /\ A =/= B ) -> ( ( VtxDeg ` G ) ` A ) = 2 ) |