This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of edges in a multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| Assertion | umgr2v2eedg | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( Edg ` G ) = { { A , B } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgr2v2evtx.g | |- G = <. V , { <. 0 , { A , B } >. , <. 1 , { A , B } >. } >. |
|
| 2 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 3 | 2 | a1i | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 4 | 1 | umgr2v2eiedg | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( iEdg ` G ) = { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
| 5 | 4 | rneqd | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ran ( iEdg ` G ) = ran { <. 0 , { A , B } >. , <. 1 , { A , B } >. } ) |
| 6 | c0ex | |- 0 e. _V |
|
| 7 | 1ex | |- 1 e. _V |
|
| 8 | rnpropg | |- ( ( 0 e. _V /\ 1 e. _V ) -> ran { <. 0 , { A , B } >. , <. 1 , { A , B } >. } = { { A , B } , { A , B } } ) |
|
| 9 | 6 7 8 | mp2an | |- ran { <. 0 , { A , B } >. , <. 1 , { A , B } >. } = { { A , B } , { A , B } } |
| 10 | 9 | a1i | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ran { <. 0 , { A , B } >. , <. 1 , { A , B } >. } = { { A , B } , { A , B } } ) |
| 11 | dfsn2 | |- { { A , B } } = { { A , B } , { A , B } } |
|
| 12 | 10 11 | eqtr4di | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ran { <. 0 , { A , B } >. , <. 1 , { A , B } >. } = { { A , B } } ) |
| 13 | 3 5 12 | 3eqtrd | |- ( ( V e. W /\ A e. V /\ B e. V ) -> ( Edg ` G ) = { { A , B } } ) |