This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that a function has a limit. (The expression ( ( ~>uS )F ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 5-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ulmdm | |- ( F e. dom ( ~~>u ` S ) <-> F ( ~~>u ` S ) ( ( ~~>u ` S ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmrel | |- Rel ( ~~>u ` S ) |
|
| 2 | ulmuni | |- ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) |
|
| 3 | 2 | ax-gen | |- A. z ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) |
| 4 | 3 | gen2 | |- A. x A. y A. z ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) |
| 5 | dffun2 | |- ( Fun ( ~~>u ` S ) <-> ( Rel ( ~~>u ` S ) /\ A. x A. y A. z ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) ) ) |
|
| 6 | 1 4 5 | mpbir2an | |- Fun ( ~~>u ` S ) |
| 7 | funfvbrb | |- ( Fun ( ~~>u ` S ) -> ( F e. dom ( ~~>u ` S ) <-> F ( ~~>u ` S ) ( ( ~~>u ` S ) ` F ) ) ) |
|
| 8 | 6 7 | ax-mp | |- ( F e. dom ( ~~>u ` S ) <-> F ( ~~>u ` S ) ( ( ~~>u ` S ) ` F ) ) |