This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ulmclm.z | |- Z = ( ZZ>= ` M ) |
|
| ulmclm.m | |- ( ph -> M e. ZZ ) |
||
| ulmclm.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
||
| ulmclm.a | |- ( ph -> A e. S ) |
||
| ulmclm.h | |- ( ph -> H e. W ) |
||
| ulmclm.e | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) ` A ) = ( H ` k ) ) |
||
| ulmclm.u | |- ( ph -> F ( ~~>u ` S ) G ) |
||
| Assertion | ulmclm | |- ( ph -> H ~~> ( G ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ulmclm.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | ulmclm.m | |- ( ph -> M e. ZZ ) |
|
| 3 | ulmclm.f | |- ( ph -> F : Z --> ( CC ^m S ) ) |
|
| 4 | ulmclm.a | |- ( ph -> A e. S ) |
|
| 5 | ulmclm.h | |- ( ph -> H e. W ) |
|
| 6 | ulmclm.e | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) ` A ) = ( H ` k ) ) |
|
| 7 | ulmclm.u | |- ( ph -> F ( ~~>u ` S ) G ) |
|
| 8 | fveq2 | |- ( z = A -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` A ) ) |
|
| 9 | fveq2 | |- ( z = A -> ( G ` z ) = ( G ` A ) ) |
|
| 10 | 8 9 | oveq12d | |- ( z = A -> ( ( ( F ` k ) ` z ) - ( G ` z ) ) = ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) |
| 11 | 10 | fveq2d | |- ( z = A -> ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) = ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) ) |
| 12 | 11 | breq1d | |- ( z = A -> ( ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x <-> ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 13 | 12 | rspcv | |- ( A e. S -> ( A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 14 | 4 13 | syl | |- ( ph -> ( A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 15 | 14 | ralimdv | |- ( ph -> ( A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 16 | 15 | reximdv | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 17 | 16 | ralimdv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 18 | eqidd | |- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` z ) ) |
|
| 19 | eqidd | |- ( ( ph /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
|
| 20 | ulmcl | |- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
|
| 21 | 7 20 | syl | |- ( ph -> G : S --> CC ) |
| 22 | ulmscl | |- ( F ( ~~>u ` S ) G -> S e. _V ) |
|
| 23 | 7 22 | syl | |- ( ph -> S e. _V ) |
| 24 | 1 2 3 18 19 21 23 | ulm2 | |- ( ph -> ( F ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) |
| 25 | 6 | eqcomd | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ` A ) ) |
| 26 | 21 4 | ffvelcdmd | |- ( ph -> ( G ` A ) e. CC ) |
| 27 | 3 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( CC ^m S ) ) |
| 28 | elmapi | |- ( ( F ` k ) e. ( CC ^m S ) -> ( F ` k ) : S --> CC ) |
|
| 29 | 27 28 | syl | |- ( ( ph /\ k e. Z ) -> ( F ` k ) : S --> CC ) |
| 30 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> A e. S ) |
| 31 | 29 30 | ffvelcdmd | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) ` A ) e. CC ) |
| 32 | 1 2 5 25 26 31 | clim2c | |- ( ph -> ( H ~~> ( G ` A ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) |
| 33 | 17 24 32 | 3imtr4d | |- ( ph -> ( F ( ~~>u ` S ) G -> H ~~> ( G ` A ) ) ) |
| 34 | 7 33 | mpd | |- ( ph -> H ~~> ( G ` A ) ) |