This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021) (Proof shortened by AV, 31-Oct-2021) (Revised by AV, 7-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrwkspth | |- ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P <-> F ( A ( SPathsOn ` G ) B ) P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl31 | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> F ( Walks ` G ) P ) |
|
| 2 | uhgrwkspthlem1 | |- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 1 ) -> Fun `' F ) |
|
| 3 | 2 | expcom | |- ( ( # ` F ) = 1 -> ( F ( Walks ` G ) P -> Fun `' F ) ) |
| 4 | 3 | 3ad2ant2 | |- ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> ( F ( Walks ` G ) P -> Fun `' F ) ) |
| 5 | 4 | com12 | |- ( F ( Walks ` G ) P -> ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> Fun `' F ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> Fun `' F ) ) |
| 7 | 6 | 3ad2ant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> Fun `' F ) ) |
| 8 | 7 | imp | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> Fun `' F ) |
| 9 | istrl | |- ( F ( Trails ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' F ) ) |
|
| 10 | 1 8 9 | sylanbrc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> F ( Trails ` G ) P ) |
| 11 | 3simpc | |- ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> ( ( # ` F ) = 1 /\ A =/= B ) ) |
|
| 12 | 11 | adantl | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> ( ( # ` F ) = 1 /\ A =/= B ) ) |
| 13 | 3simpc | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
|
| 14 | 13 | 3ad2ant3 | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 15 | 14 | adantr | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 16 | uhgrwkspthlem2 | |- ( ( F ( Walks ` G ) P /\ ( ( # ` F ) = 1 /\ A =/= B ) /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> Fun `' P ) |
|
| 17 | 1 12 15 16 | syl3anc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> Fun `' P ) |
| 18 | isspth | |- ( F ( SPaths ` G ) P <-> ( F ( Trails ` G ) P /\ Fun `' P ) ) |
|
| 19 | 10 17 18 | sylanbrc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> F ( SPaths ` G ) P ) |
| 20 | 3anass | |- ( ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) <-> ( F ( SPaths ` G ) P /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
|
| 21 | 19 15 20 | sylanbrc | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) |
| 22 | 3simpa | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
|
| 23 | 22 | adantr | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 24 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 25 | 24 | isspthonpth | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 26 | 23 25 | syl | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> ( F ( A ( SPathsOn ` G ) B ) P <-> ( F ( SPaths ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 27 | 21 26 | mpbird | |- ( ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) /\ ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) ) -> F ( A ( SPathsOn ` G ) B ) P ) |
| 28 | 27 | ex | |- ( ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> F ( A ( SPathsOn ` G ) B ) P ) ) |
| 29 | 24 | wlkonprop | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 30 | 3simpc | |- ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
|
| 31 | 30 | 3anim1i | |- ( ( ( G e. _V /\ A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 32 | 29 31 | syl | |- ( F ( A ( WalksOn ` G ) B ) P -> ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) ) |
| 33 | 28 32 | syl11 | |- ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P -> F ( A ( SPathsOn ` G ) B ) P ) ) |
| 34 | spthonpthon | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( PathsOn ` G ) B ) P ) |
|
| 35 | pthontrlon | |- ( F ( A ( PathsOn ` G ) B ) P -> F ( A ( TrailsOn ` G ) B ) P ) |
|
| 36 | trlsonwlkon | |- ( F ( A ( TrailsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) |
|
| 37 | 34 35 36 | 3syl | |- ( F ( A ( SPathsOn ` G ) B ) P -> F ( A ( WalksOn ` G ) B ) P ) |
| 38 | 33 37 | impbid1 | |- ( ( G e. W /\ ( # ` F ) = 1 /\ A =/= B ) -> ( F ( A ( WalksOn ` G ) B ) P <-> F ( A ( SPathsOn ` G ) B ) P ) ) |