This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrwkspthlem2 | |- ( ( F ( Walks ` G ) P /\ ( ( # ` F ) = 1 /\ A =/= B ) /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> Fun `' P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | 1 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 3 | oveq2 | |- ( ( # ` F ) = 1 -> ( 0 ... ( # ` F ) ) = ( 0 ... 1 ) ) |
|
| 4 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 5 | 4 | oveq2i | |- ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
| 6 | 0z | |- 0 e. ZZ |
|
| 7 | fzpr | |- ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
|
| 8 | 6 7 | ax-mp | |- ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
| 9 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 10 | 9 | preq2i | |- { 0 , ( 0 + 1 ) } = { 0 , 1 } |
| 11 | 5 8 10 | 3eqtri | |- ( 0 ... 1 ) = { 0 , 1 } |
| 12 | 3 11 | eqtrdi | |- ( ( # ` F ) = 1 -> ( 0 ... ( # ` F ) ) = { 0 , 1 } ) |
| 13 | 12 | feq2d | |- ( ( # ` F ) = 1 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : { 0 , 1 } --> ( Vtx ` G ) ) ) |
| 14 | 13 | adantr | |- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : { 0 , 1 } --> ( Vtx ` G ) ) ) |
| 15 | simpl | |- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) |
|
| 16 | simpr | |- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) |
|
| 17 | 15 16 | neeq12d | |- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> A =/= B ) ) |
| 18 | 17 | bicomd | |- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 19 | fveq2 | |- ( ( # ` F ) = 1 -> ( P ` ( # ` F ) ) = ( P ` 1 ) ) |
|
| 20 | 19 | neeq2d | |- ( ( # ` F ) = 1 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 21 | 18 20 | sylan9bbr | |- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 22 | 14 21 | anbi12d | |- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A =/= B ) <-> ( P : { 0 , 1 } --> ( Vtx ` G ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) ) |
| 23 | 1z | |- 1 e. ZZ |
|
| 24 | fpr2g | |- ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( P : { 0 , 1 } --> ( Vtx ` G ) <-> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) ) ) |
|
| 25 | 6 23 24 | mp2an | |- ( P : { 0 , 1 } --> ( Vtx ` G ) <-> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) ) |
| 26 | funcnvs2 | |- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
|
| 27 | 26 | 3expa | |- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 28 | 27 | adantl | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 29 | simpl | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) |
|
| 30 | s2prop | |- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) -> <" ( P ` 0 ) ( P ` 1 ) "> = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) |
|
| 31 | 30 | eqcomd | |- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) -> { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } = <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 32 | 31 | adantr | |- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } = <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 33 | 32 | adantl | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } = <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 34 | 29 33 | eqtrd | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> P = <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 35 | 34 | cnveqd | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> `' P = `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
| 36 | 35 | funeqd | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> ( Fun `' P <-> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) ) |
| 37 | 28 36 | mpbird | |- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> Fun `' P ) |
| 38 | 37 | exp32 | |- ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) ) |
| 39 | 38 | impcom | |- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) |
| 40 | 39 | 3impa | |- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) |
| 41 | 25 40 | sylbi | |- ( P : { 0 , 1 } --> ( Vtx ` G ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) |
| 42 | 41 | imp | |- ( ( P : { 0 , 1 } --> ( Vtx ` G ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> Fun `' P ) |
| 43 | 22 42 | biimtrdi | |- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A =/= B ) -> Fun `' P ) ) |
| 44 | 43 | expd | |- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( A =/= B -> Fun `' P ) ) ) |
| 45 | 44 | com12 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( A =/= B -> Fun `' P ) ) ) |
| 46 | 45 | expd | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) = 1 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B -> Fun `' P ) ) ) ) |
| 47 | 46 | com34 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) = 1 -> ( A =/= B -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> Fun `' P ) ) ) ) |
| 48 | 47 | impd | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( # ` F ) = 1 /\ A =/= B ) -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> Fun `' P ) ) ) |
| 49 | 2 48 | syl | |- ( F ( Walks ` G ) P -> ( ( ( # ` F ) = 1 /\ A =/= B ) -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> Fun `' P ) ) ) |
| 50 | 49 | 3imp | |- ( ( F ( Walks ` G ) P /\ ( ( # ` F ) = 1 /\ A =/= B ) /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> Fun `' P ) |