This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrwkspthlem1 | |- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 1 ) -> Fun `' F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 2 | 1 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
| 3 | wrdl1exs1 | |- ( ( F e. Word dom ( iEdg ` G ) /\ ( # ` F ) = 1 ) -> E. i e. dom ( iEdg ` G ) F = <" i "> ) |
|
| 4 | funcnvs1 | |- Fun `' <" i "> |
|
| 5 | cnveq | |- ( F = <" i "> -> `' F = `' <" i "> ) |
|
| 6 | 5 | funeqd | |- ( F = <" i "> -> ( Fun `' F <-> Fun `' <" i "> ) ) |
| 7 | 4 6 | mpbiri | |- ( F = <" i "> -> Fun `' F ) |
| 8 | 7 | rexlimivw | |- ( E. i e. dom ( iEdg ` G ) F = <" i "> -> Fun `' F ) |
| 9 | 3 8 | syl | |- ( ( F e. Word dom ( iEdg ` G ) /\ ( # ` F ) = 1 ) -> Fun `' F ) |
| 10 | 2 9 | sylan | |- ( ( F ( Walks ` G ) P /\ ( # ` F ) = 1 ) -> Fun `' F ) |