This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fiinopn | |- ( J e. Top -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> |^| A e. J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg | |- ( A e. Fin -> ( A e. ~P J <-> A C_ J ) ) |
|
| 2 | sseq1 | |- ( x = A -> ( x C_ J <-> A C_ J ) ) |
|
| 3 | neeq1 | |- ( x = A -> ( x =/= (/) <-> A =/= (/) ) ) |
|
| 4 | eleq1 | |- ( x = A -> ( x e. Fin <-> A e. Fin ) ) |
|
| 5 | 2 3 4 | 3anbi123d | |- ( x = A -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) <-> ( A C_ J /\ A =/= (/) /\ A e. Fin ) ) ) |
| 6 | inteq | |- ( x = A -> |^| x = |^| A ) |
|
| 7 | 6 | eleq1d | |- ( x = A -> ( |^| x e. J <-> |^| A e. J ) ) |
| 8 | 7 | imbi2d | |- ( x = A -> ( ( J e. Top -> |^| x e. J ) <-> ( J e. Top -> |^| A e. J ) ) ) |
| 9 | 5 8 | imbi12d | |- ( x = A -> ( ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> ( J e. Top -> |^| x e. J ) ) <-> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) ) ) |
| 10 | sp | |- ( A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) |
|
| 11 | 10 | adantl | |- ( ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) -> ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) |
| 12 | istop2g | |- ( J e. Top -> ( J e. Top <-> ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) ) ) |
|
| 13 | 12 | ibi | |- ( J e. Top -> ( A. x ( x C_ J -> U. x e. J ) /\ A. x ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> |^| x e. J ) ) ) |
| 14 | 11 13 | syl11 | |- ( ( x C_ J /\ x =/= (/) /\ x e. Fin ) -> ( J e. Top -> |^| x e. J ) ) |
| 15 | 9 14 | vtoclg | |- ( A e. ~P J -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) ) |
| 16 | 15 | com12 | |- ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) |
| 17 | 16 | 3exp | |- ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
| 18 | 17 | com3r | |- ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( A e. ~P J -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
| 19 | 18 | com4r | |- ( A e. ~P J -> ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
| 20 | 1 19 | biimtrrdi | |- ( A e. Fin -> ( A C_ J -> ( A e. Fin -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) ) |
| 21 | 20 | pm2.43a | |- ( A e. Fin -> ( A C_ J -> ( A C_ J -> ( A =/= (/) -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
| 22 | 21 | com4l | |- ( A C_ J -> ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( J e. Top -> |^| A e. J ) ) ) ) ) |
| 23 | 22 | pm2.43i | |- ( A C_ J -> ( A =/= (/) -> ( A e. Fin -> ( J e. Top -> |^| A e. J ) ) ) ) |
| 24 | 23 | 3imp | |- ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> ( J e. Top -> |^| A e. J ) ) |
| 25 | 24 | com12 | |- ( J e. Top -> ( ( A C_ J /\ A =/= (/) /\ A e. Fin ) -> |^| A e. J ) ) |