This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tx1cn | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1stres | |- ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X |
|
| 2 | 1 | a1i | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X ) |
| 3 | ffn | |- ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X -> ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) ) |
|
| 4 | elpreima | |- ( ( 1st |` ( X X. Y ) ) Fn ( X X. Y ) -> ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ ( ( 1st |` ( X X. Y ) ) ` z ) e. w ) ) ) |
|
| 5 | 1 3 4 | mp2b | |- ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ ( ( 1st |` ( X X. Y ) ) ` z ) e. w ) ) |
| 6 | fvres | |- ( z e. ( X X. Y ) -> ( ( 1st |` ( X X. Y ) ) ` z ) = ( 1st ` z ) ) |
|
| 7 | 6 | eleq1d | |- ( z e. ( X X. Y ) -> ( ( ( 1st |` ( X X. Y ) ) ` z ) e. w <-> ( 1st ` z ) e. w ) ) |
| 8 | 1st2nd2 | |- ( z e. ( X X. Y ) -> z = <. ( 1st ` z ) , ( 2nd ` z ) >. ) |
|
| 9 | xp2nd | |- ( z e. ( X X. Y ) -> ( 2nd ` z ) e. Y ) |
|
| 10 | elxp6 | |- ( z e. ( w X. Y ) <-> ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( ( 1st ` z ) e. w /\ ( 2nd ` z ) e. Y ) ) ) |
|
| 11 | anass | |- ( ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. w ) /\ ( 2nd ` z ) e. Y ) <-> ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( ( 1st ` z ) e. w /\ ( 2nd ` z ) e. Y ) ) ) |
|
| 12 | an32 | |- ( ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 1st ` z ) e. w ) /\ ( 2nd ` z ) e. Y ) <-> ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 2nd ` z ) e. Y ) /\ ( 1st ` z ) e. w ) ) |
|
| 13 | 10 11 12 | 3bitr2i | |- ( z e. ( w X. Y ) <-> ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 2nd ` z ) e. Y ) /\ ( 1st ` z ) e. w ) ) |
| 14 | 13 | baib | |- ( ( z = <. ( 1st ` z ) , ( 2nd ` z ) >. /\ ( 2nd ` z ) e. Y ) -> ( z e. ( w X. Y ) <-> ( 1st ` z ) e. w ) ) |
| 15 | 8 9 14 | syl2anc | |- ( z e. ( X X. Y ) -> ( z e. ( w X. Y ) <-> ( 1st ` z ) e. w ) ) |
| 16 | 7 15 | bitr4d | |- ( z e. ( X X. Y ) -> ( ( ( 1st |` ( X X. Y ) ) ` z ) e. w <-> z e. ( w X. Y ) ) ) |
| 17 | 16 | pm5.32i | |- ( ( z e. ( X X. Y ) /\ ( ( 1st |` ( X X. Y ) ) ` z ) e. w ) <-> ( z e. ( X X. Y ) /\ z e. ( w X. Y ) ) ) |
| 18 | 5 17 | bitri | |- ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> ( z e. ( X X. Y ) /\ z e. ( w X. Y ) ) ) |
| 19 | toponss | |- ( ( R e. ( TopOn ` X ) /\ w e. R ) -> w C_ X ) |
|
| 20 | 19 | adantlr | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> w C_ X ) |
| 21 | xpss1 | |- ( w C_ X -> ( w X. Y ) C_ ( X X. Y ) ) |
|
| 22 | 20 21 | syl | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( w X. Y ) C_ ( X X. Y ) ) |
| 23 | 22 | sseld | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( z e. ( w X. Y ) -> z e. ( X X. Y ) ) ) |
| 24 | 23 | pm4.71rd | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( z e. ( w X. Y ) <-> ( z e. ( X X. Y ) /\ z e. ( w X. Y ) ) ) ) |
| 25 | 18 24 | bitr4id | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( z e. ( `' ( 1st |` ( X X. Y ) ) " w ) <-> z e. ( w X. Y ) ) ) |
| 26 | 25 | eqrdv | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( `' ( 1st |` ( X X. Y ) ) " w ) = ( w X. Y ) ) |
| 27 | toponmax | |- ( S e. ( TopOn ` Y ) -> Y e. S ) |
|
| 28 | 27 | ad2antlr | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> Y e. S ) |
| 29 | txopn | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ ( w e. R /\ Y e. S ) ) -> ( w X. Y ) e. ( R tX S ) ) |
|
| 30 | 29 | anassrs | |- ( ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) /\ Y e. S ) -> ( w X. Y ) e. ( R tX S ) ) |
| 31 | 28 30 | mpdan | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( w X. Y ) e. ( R tX S ) ) |
| 32 | 26 31 | eqeltrd | |- ( ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) /\ w e. R ) -> ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) |
| 33 | 32 | ralrimiva | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> A. w e. R ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) |
| 34 | txtopon | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( R tX S ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 35 | simpl | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> R e. ( TopOn ` X ) ) |
|
| 36 | iscn | |- ( ( ( R tX S ) e. ( TopOn ` ( X X. Y ) ) /\ R e. ( TopOn ` X ) ) -> ( ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) <-> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X /\ A. w e. R ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) ) ) |
|
| 37 | 34 35 36 | syl2anc | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) <-> ( ( 1st |` ( X X. Y ) ) : ( X X. Y ) --> X /\ A. w e. R ( `' ( 1st |` ( X X. Y ) ) " w ) e. ( R tX S ) ) ) ) |
| 38 | 2 33 37 | mpbir2and | |- ( ( R e. ( TopOn ` X ) /\ S e. ( TopOn ` Y ) ) -> ( 1st |` ( X X. Y ) ) e. ( ( R tX S ) Cn R ) ) |