This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The uniform structure of a constructed uniform space. (Contributed by Thierry Arnoux, 15-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| Assertion | tususs | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSt ` K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| 2 | 1 | tusunif | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSet ` K ) ) |
| 3 | ustuni | |- ( U e. ( UnifOn ` X ) -> U. U = ( X X. X ) ) |
|
| 4 | 2 | unieqd | |- ( U e. ( UnifOn ` X ) -> U. U = U. ( UnifSet ` K ) ) |
| 5 | 1 | tusbas | |- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
| 6 | 5 | sqxpeqd | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 7 | 3 4 6 | 3eqtr3rd | |- ( U e. ( UnifOn ` X ) -> ( ( Base ` K ) X. ( Base ` K ) ) = U. ( UnifSet ` K ) ) |
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | eqid | |- ( UnifSet ` K ) = ( UnifSet ` K ) |
|
| 10 | 8 9 | ussid | |- ( ( ( Base ` K ) X. ( Base ` K ) ) = U. ( UnifSet ` K ) -> ( UnifSet ` K ) = ( UnifSt ` K ) ) |
| 11 | 7 10 | syl | |- ( U e. ( UnifOn ` X ) -> ( UnifSet ` K ) = ( UnifSt ` K ) ) |
| 12 | 2 11 | eqtrd | |- ( U e. ( UnifOn ` X ) -> U = ( UnifSt ` K ) ) |