This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed uniform space is a topological space. (Contributed by Thierry Arnoux, 25-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| Assertion | tustps | |- ( U e. ( UnifOn ` X ) -> K e. TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tuslem.k | |- K = ( toUnifSp ` U ) |
|
| 2 | utoptopon | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) e. ( TopOn ` X ) ) |
|
| 3 | eqid | |- ( unifTop ` U ) = ( unifTop ` U ) |
|
| 4 | 1 3 | tustopn | |- ( U e. ( UnifOn ` X ) -> ( unifTop ` U ) = ( TopOpen ` K ) ) |
| 5 | 1 | tusbas | |- ( U e. ( UnifOn ` X ) -> X = ( Base ` K ) ) |
| 6 | 5 | fveq2d | |- ( U e. ( UnifOn ` X ) -> ( TopOn ` X ) = ( TopOn ` ( Base ` K ) ) ) |
| 7 | 2 4 6 | 3eltr3d | |- ( U e. ( UnifOn ` X ) -> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 8 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 9 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 10 | 8 9 | istps | |- ( K e. TopSp <-> ( TopOpen ` K ) e. ( TopOn ` ( Base ` K ) ) ) |
| 11 | 7 10 | sylibr | |- ( U e. ( UnifOn ` X ) -> K e. TopSp ) |