This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are members of a Tarski class, their unordered pair is also an element of the class. JFM CLASSES2 th. 3 (partly). (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskpr | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> T e. Tarski ) |
|
| 2 | prssi | |- ( ( A e. T /\ B e. T ) -> { A , B } C_ T ) |
|
| 3 | 2 | 3adant1 | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } C_ T ) |
| 4 | prfi | |- { A , B } e. Fin |
|
| 5 | isfinite | |- ( { A , B } e. Fin <-> { A , B } ~< _om ) |
|
| 6 | 4 5 | mpbi | |- { A , B } ~< _om |
| 7 | ne0i | |- ( A e. T -> T =/= (/) ) |
|
| 8 | tskinf | |- ( ( T e. Tarski /\ T =/= (/) ) -> _om ~<_ T ) |
|
| 9 | 7 8 | sylan2 | |- ( ( T e. Tarski /\ A e. T ) -> _om ~<_ T ) |
| 10 | sdomdomtr | |- ( ( { A , B } ~< _om /\ _om ~<_ T ) -> { A , B } ~< T ) |
|
| 11 | 6 9 10 | sylancr | |- ( ( T e. Tarski /\ A e. T ) -> { A , B } ~< T ) |
| 12 | 11 | 3adant3 | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } ~< T ) |
| 13 | tskssel | |- ( ( T e. Tarski /\ { A , B } C_ T /\ { A , B } ~< T ) -> { A , B } e. T ) |
|
| 14 | 1 3 12 13 | syl3anc | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } e. T ) |