This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r111 | |- R1 : On -1-1-> _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1fnon | |- R1 Fn On |
|
| 2 | dffn2 | |- ( R1 Fn On <-> R1 : On --> _V ) |
|
| 3 | 1 2 | mpbi | |- R1 : On --> _V |
| 4 | eloni | |- ( x e. On -> Ord x ) |
|
| 5 | eloni | |- ( y e. On -> Ord y ) |
|
| 6 | ordtri3or | |- ( ( Ord x /\ Ord y ) -> ( x e. y \/ x = y \/ y e. x ) ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( x e. On /\ y e. On ) -> ( x e. y \/ x = y \/ y e. x ) ) |
| 8 | sdomirr | |- -. ( R1 ` y ) ~< ( R1 ` y ) |
|
| 9 | r1sdom | |- ( ( y e. On /\ x e. y ) -> ( R1 ` x ) ~< ( R1 ` y ) ) |
|
| 10 | breq1 | |- ( ( R1 ` x ) = ( R1 ` y ) -> ( ( R1 ` x ) ~< ( R1 ` y ) <-> ( R1 ` y ) ~< ( R1 ` y ) ) ) |
|
| 11 | 9 10 | syl5ibcom | |- ( ( y e. On /\ x e. y ) -> ( ( R1 ` x ) = ( R1 ` y ) -> ( R1 ` y ) ~< ( R1 ` y ) ) ) |
| 12 | 8 11 | mtoi | |- ( ( y e. On /\ x e. y ) -> -. ( R1 ` x ) = ( R1 ` y ) ) |
| 13 | 12 | 3adant1 | |- ( ( x e. On /\ y e. On /\ x e. y ) -> -. ( R1 ` x ) = ( R1 ` y ) ) |
| 14 | 13 | pm2.21d | |- ( ( x e. On /\ y e. On /\ x e. y ) -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) |
| 15 | 14 | 3expia | |- ( ( x e. On /\ y e. On ) -> ( x e. y -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) ) |
| 16 | ax-1 | |- ( x = y -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) |
|
| 17 | 16 | a1i | |- ( ( x e. On /\ y e. On ) -> ( x = y -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) ) |
| 18 | r1sdom | |- ( ( x e. On /\ y e. x ) -> ( R1 ` y ) ~< ( R1 ` x ) ) |
|
| 19 | breq2 | |- ( ( R1 ` x ) = ( R1 ` y ) -> ( ( R1 ` y ) ~< ( R1 ` x ) <-> ( R1 ` y ) ~< ( R1 ` y ) ) ) |
|
| 20 | 18 19 | syl5ibcom | |- ( ( x e. On /\ y e. x ) -> ( ( R1 ` x ) = ( R1 ` y ) -> ( R1 ` y ) ~< ( R1 ` y ) ) ) |
| 21 | 8 20 | mtoi | |- ( ( x e. On /\ y e. x ) -> -. ( R1 ` x ) = ( R1 ` y ) ) |
| 22 | 21 | 3adant2 | |- ( ( x e. On /\ y e. On /\ y e. x ) -> -. ( R1 ` x ) = ( R1 ` y ) ) |
| 23 | 22 | pm2.21d | |- ( ( x e. On /\ y e. On /\ y e. x ) -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) |
| 24 | 23 | 3expia | |- ( ( x e. On /\ y e. On ) -> ( y e. x -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) ) |
| 25 | 15 17 24 | 3jaod | |- ( ( x e. On /\ y e. On ) -> ( ( x e. y \/ x = y \/ y e. x ) -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) ) |
| 26 | 7 25 | mpd | |- ( ( x e. On /\ y e. On ) -> ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) |
| 27 | 26 | rgen2 | |- A. x e. On A. y e. On ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) |
| 28 | dff13 | |- ( R1 : On -1-1-> _V <-> ( R1 : On --> _V /\ A. x e. On A. y e. On ( ( R1 ` x ) = ( R1 ` y ) -> x = y ) ) ) |
|
| 29 | 3 27 28 | mpbir2an | |- R1 : On -1-1-> _V |