This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty Tarski class is infinite, because it contains all the finite levels of the cumulative hierarchy. (This proof does not use ax-inf .) (Contributed by Mario Carneiro, 24-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskr1om | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = (/) -> ( R1 ` x ) = ( R1 ` (/) ) ) |
|
| 2 | 1 | eleq1d | |- ( x = (/) -> ( ( R1 ` x ) e. T <-> ( R1 ` (/) ) e. T ) ) |
| 3 | fveq2 | |- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
|
| 4 | 3 | eleq1d | |- ( x = y -> ( ( R1 ` x ) e. T <-> ( R1 ` y ) e. T ) ) |
| 5 | fveq2 | |- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
|
| 6 | 5 | eleq1d | |- ( x = suc y -> ( ( R1 ` x ) e. T <-> ( R1 ` suc y ) e. T ) ) |
| 7 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 8 | tsk0 | |- ( ( T e. Tarski /\ T =/= (/) ) -> (/) e. T ) |
|
| 9 | 7 8 | eqeltrid | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 ` (/) ) e. T ) |
| 10 | tskpw | |- ( ( T e. Tarski /\ ( R1 ` y ) e. T ) -> ~P ( R1 ` y ) e. T ) |
|
| 11 | nnon | |- ( y e. _om -> y e. On ) |
|
| 12 | r1suc | |- ( y e. On -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
|
| 13 | 11 12 | syl | |- ( y e. _om -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
| 14 | 13 | eleq1d | |- ( y e. _om -> ( ( R1 ` suc y ) e. T <-> ~P ( R1 ` y ) e. T ) ) |
| 15 | 10 14 | imbitrrid | |- ( y e. _om -> ( ( T e. Tarski /\ ( R1 ` y ) e. T ) -> ( R1 ` suc y ) e. T ) ) |
| 16 | 15 | expd | |- ( y e. _om -> ( T e. Tarski -> ( ( R1 ` y ) e. T -> ( R1 ` suc y ) e. T ) ) ) |
| 17 | 16 | adantrd | |- ( y e. _om -> ( ( T e. Tarski /\ T =/= (/) ) -> ( ( R1 ` y ) e. T -> ( R1 ` suc y ) e. T ) ) ) |
| 18 | 2 4 6 9 17 | finds2 | |- ( x e. _om -> ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 ` x ) e. T ) ) |
| 19 | eleq1 | |- ( ( R1 ` x ) = y -> ( ( R1 ` x ) e. T <-> y e. T ) ) |
|
| 20 | 19 | imbi2d | |- ( ( R1 ` x ) = y -> ( ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 ` x ) e. T ) <-> ( ( T e. Tarski /\ T =/= (/) ) -> y e. T ) ) ) |
| 21 | 18 20 | syl5ibcom | |- ( x e. _om -> ( ( R1 ` x ) = y -> ( ( T e. Tarski /\ T =/= (/) ) -> y e. T ) ) ) |
| 22 | 21 | rexlimiv | |- ( E. x e. _om ( R1 ` x ) = y -> ( ( T e. Tarski /\ T =/= (/) ) -> y e. T ) ) |
| 23 | r1fnon | |- R1 Fn On |
|
| 24 | fnfun | |- ( R1 Fn On -> Fun R1 ) |
|
| 25 | 23 24 | ax-mp | |- Fun R1 |
| 26 | fvelima | |- ( ( Fun R1 /\ y e. ( R1 " _om ) ) -> E. x e. _om ( R1 ` x ) = y ) |
|
| 27 | 25 26 | mpan | |- ( y e. ( R1 " _om ) -> E. x e. _om ( R1 ` x ) = y ) |
| 28 | 22 27 | syl11 | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( y e. ( R1 " _om ) -> y e. T ) ) |
| 29 | 28 | ssrdv | |- ( ( T e. Tarski /\ T =/= (/) ) -> ( R1 " _om ) C_ T ) |