This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for the trace of a filter L to be a filter. (Contributed by FL, 2-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfil1 | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> A = U. ( L |`t A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> A C_ Y ) |
|
| 2 | sseqin2 | |- ( A C_ Y <-> ( Y i^i A ) = A ) |
|
| 3 | 1 2 | sylib | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> ( Y i^i A ) = A ) |
| 4 | simpl | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> L e. ( Fil ` Y ) ) |
|
| 5 | id | |- ( A C_ Y -> A C_ Y ) |
|
| 6 | filtop | |- ( L e. ( Fil ` Y ) -> Y e. L ) |
|
| 7 | ssexg | |- ( ( A C_ Y /\ Y e. L ) -> A e. _V ) |
|
| 8 | 5 6 7 | syl2anr | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> A e. _V ) |
| 9 | 6 | adantr | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> Y e. L ) |
| 10 | elrestr | |- ( ( L e. ( Fil ` Y ) /\ A e. _V /\ Y e. L ) -> ( Y i^i A ) e. ( L |`t A ) ) |
|
| 11 | 4 8 9 10 | syl3anc | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> ( Y i^i A ) e. ( L |`t A ) ) |
| 12 | 3 11 | eqeltrrd | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> A e. ( L |`t A ) ) |
| 13 | elssuni | |- ( A e. ( L |`t A ) -> A C_ U. ( L |`t A ) ) |
|
| 14 | 12 13 | syl | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> A C_ U. ( L |`t A ) ) |
| 15 | restsspw | |- ( L |`t A ) C_ ~P A |
|
| 16 | sspwuni | |- ( ( L |`t A ) C_ ~P A <-> U. ( L |`t A ) C_ A ) |
|
| 17 | 15 16 | mpbi | |- U. ( L |`t A ) C_ A |
| 18 | 17 | a1i | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> U. ( L |`t A ) C_ A ) |
| 19 | 14 18 | eqssd | |- ( ( L e. ( Fil ` Y ) /\ A C_ Y ) -> A = U. ( L |`t A ) ) |