This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transposition of a class of ordered triples. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tposoprab.1 | |- F = { <. <. x , y >. , z >. | ph } |
|
| Assertion | tposoprab | |- tpos F = { <. <. y , x >. , z >. | ph } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposoprab.1 | |- F = { <. <. x , y >. , z >. | ph } |
|
| 2 | 1 | tposeqi | |- tpos F = tpos { <. <. x , y >. , z >. | ph } |
| 3 | reldmoprab | |- Rel dom { <. <. x , y >. , z >. | ph } |
|
| 4 | dftpos3 | |- ( Rel dom { <. <. x , y >. , z >. | ph } -> tpos { <. <. x , y >. , z >. | ph } = { <. <. a , b >. , c >. | <. b , a >. { <. <. x , y >. , z >. | ph } c } ) |
|
| 5 | 3 4 | ax-mp | |- tpos { <. <. x , y >. , z >. | ph } = { <. <. a , b >. , c >. | <. b , a >. { <. <. x , y >. , z >. | ph } c } |
| 6 | nfcv | |- F/_ y <. b , a >. |
|
| 7 | nfoprab2 | |- F/_ y { <. <. x , y >. , z >. | ph } |
|
| 8 | nfcv | |- F/_ y c |
|
| 9 | 6 7 8 | nfbr | |- F/ y <. b , a >. { <. <. x , y >. , z >. | ph } c |
| 10 | nfcv | |- F/_ x <. b , a >. |
|
| 11 | nfoprab1 | |- F/_ x { <. <. x , y >. , z >. | ph } |
|
| 12 | nfcv | |- F/_ x c |
|
| 13 | 10 11 12 | nfbr | |- F/ x <. b , a >. { <. <. x , y >. , z >. | ph } c |
| 14 | nfv | |- F/ a <. x , y >. { <. <. x , y >. , z >. | ph } c |
|
| 15 | nfv | |- F/ b <. x , y >. { <. <. x , y >. , z >. | ph } c |
|
| 16 | opeq12 | |- ( ( b = x /\ a = y ) -> <. b , a >. = <. x , y >. ) |
|
| 17 | 16 | ancoms | |- ( ( a = y /\ b = x ) -> <. b , a >. = <. x , y >. ) |
| 18 | 17 | breq1d | |- ( ( a = y /\ b = x ) -> ( <. b , a >. { <. <. x , y >. , z >. | ph } c <-> <. x , y >. { <. <. x , y >. , z >. | ph } c ) ) |
| 19 | 9 13 14 15 18 | cbvoprab12 | |- { <. <. a , b >. , c >. | <. b , a >. { <. <. x , y >. , z >. | ph } c } = { <. <. y , x >. , c >. | <. x , y >. { <. <. x , y >. , z >. | ph } c } |
| 20 | nfcv | |- F/_ z <. x , y >. |
|
| 21 | nfoprab3 | |- F/_ z { <. <. x , y >. , z >. | ph } |
|
| 22 | nfcv | |- F/_ z c |
|
| 23 | 20 21 22 | nfbr | |- F/ z <. x , y >. { <. <. x , y >. , z >. | ph } c |
| 24 | nfv | |- F/ c ph |
|
| 25 | breq2 | |- ( c = z -> ( <. x , y >. { <. <. x , y >. , z >. | ph } c <-> <. x , y >. { <. <. x , y >. , z >. | ph } z ) ) |
|
| 26 | df-br | |- ( <. x , y >. { <. <. x , y >. , z >. | ph } z <-> <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } ) |
|
| 27 | oprabidw | |- ( <. <. x , y >. , z >. e. { <. <. x , y >. , z >. | ph } <-> ph ) |
|
| 28 | 26 27 | bitri | |- ( <. x , y >. { <. <. x , y >. , z >. | ph } z <-> ph ) |
| 29 | 25 28 | bitrdi | |- ( c = z -> ( <. x , y >. { <. <. x , y >. , z >. | ph } c <-> ph ) ) |
| 30 | 23 24 29 | cbvoprab3 | |- { <. <. y , x >. , c >. | <. x , y >. { <. <. x , y >. , z >. | ph } c } = { <. <. y , x >. , z >. | ph } |
| 31 | 19 30 | eqtri | |- { <. <. a , b >. , c >. | <. b , a >. { <. <. x , y >. , z >. | ph } c } = { <. <. y , x >. , z >. | ph } |
| 32 | 2 5 31 | 3eqtri | |- tpos F = { <. <. y , x >. , z >. | ph } |