This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of tpos when F has relational domain. Compare df-cnv . (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dftpos3 | |- ( Rel dom F -> tpos F = { <. <. x , y >. , z >. | <. y , x >. F z } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv | |- Rel `' dom F |
|
| 2 | dmtpos | |- ( Rel dom F -> dom tpos F = `' dom F ) |
|
| 3 | 2 | releqd | |- ( Rel dom F -> ( Rel dom tpos F <-> Rel `' dom F ) ) |
| 4 | 1 3 | mpbiri | |- ( Rel dom F -> Rel dom tpos F ) |
| 5 | reltpos | |- Rel tpos F |
|
| 6 | 4 5 | jctil | |- ( Rel dom F -> ( Rel tpos F /\ Rel dom tpos F ) ) |
| 7 | relrelss | |- ( ( Rel tpos F /\ Rel dom tpos F ) <-> tpos F C_ ( ( _V X. _V ) X. _V ) ) |
|
| 8 | 6 7 | sylib | |- ( Rel dom F -> tpos F C_ ( ( _V X. _V ) X. _V ) ) |
| 9 | 8 | sseld | |- ( Rel dom F -> ( w e. tpos F -> w e. ( ( _V X. _V ) X. _V ) ) ) |
| 10 | elvvv | |- ( w e. ( ( _V X. _V ) X. _V ) <-> E. x E. y E. z w = <. <. x , y >. , z >. ) |
|
| 11 | 9 10 | imbitrdi | |- ( Rel dom F -> ( w e. tpos F -> E. x E. y E. z w = <. <. x , y >. , z >. ) ) |
| 12 | 11 | pm4.71rd | |- ( Rel dom F -> ( w e. tpos F <-> ( E. x E. y E. z w = <. <. x , y >. , z >. /\ w e. tpos F ) ) ) |
| 13 | 19.41vvv | |- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> ( E. x E. y E. z w = <. <. x , y >. , z >. /\ w e. tpos F ) ) |
|
| 14 | eleq1 | |- ( w = <. <. x , y >. , z >. -> ( w e. tpos F <-> <. <. x , y >. , z >. e. tpos F ) ) |
|
| 15 | df-br | |- ( <. x , y >. tpos F z <-> <. <. x , y >. , z >. e. tpos F ) |
|
| 16 | brtpos | |- ( z e. _V -> ( <. x , y >. tpos F z <-> <. y , x >. F z ) ) |
|
| 17 | 16 | elv | |- ( <. x , y >. tpos F z <-> <. y , x >. F z ) |
| 18 | 15 17 | bitr3i | |- ( <. <. x , y >. , z >. e. tpos F <-> <. y , x >. F z ) |
| 19 | 14 18 | bitrdi | |- ( w = <. <. x , y >. , z >. -> ( w e. tpos F <-> <. y , x >. F z ) ) |
| 20 | 19 | pm5.32i | |- ( ( w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) |
| 21 | 20 | 3exbii | |- ( E. x E. y E. z ( w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) |
| 22 | 13 21 | bitr3i | |- ( ( E. x E. y E. z w = <. <. x , y >. , z >. /\ w e. tpos F ) <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) |
| 23 | 12 22 | bitrdi | |- ( Rel dom F -> ( w e. tpos F <-> E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) ) ) |
| 24 | 23 | eqabdv | |- ( Rel dom F -> tpos F = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) } ) |
| 25 | df-oprab | |- { <. <. x , y >. , z >. | <. y , x >. F z } = { w | E. x E. y E. z ( w = <. <. x , y >. , z >. /\ <. y , x >. F z ) } |
|
| 26 | 24 25 | eqtr4di | |- ( Rel dom F -> tpos F = { <. <. x , y >. , z >. | <. y , x >. F z } ) |