This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvoprab12.1 | |- F/ w ph |
|
| cbvoprab12.2 | |- F/ v ph |
||
| cbvoprab12.3 | |- F/ x ps |
||
| cbvoprab12.4 | |- F/ y ps |
||
| cbvoprab12.5 | |- ( ( x = w /\ y = v ) -> ( ph <-> ps ) ) |
||
| Assertion | cbvoprab12 | |- { <. <. x , y >. , z >. | ph } = { <. <. w , v >. , z >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvoprab12.1 | |- F/ w ph |
|
| 2 | cbvoprab12.2 | |- F/ v ph |
|
| 3 | cbvoprab12.3 | |- F/ x ps |
|
| 4 | cbvoprab12.4 | |- F/ y ps |
|
| 5 | cbvoprab12.5 | |- ( ( x = w /\ y = v ) -> ( ph <-> ps ) ) |
|
| 6 | nfv | |- F/ w u = <. x , y >. |
|
| 7 | 6 1 | nfan | |- F/ w ( u = <. x , y >. /\ ph ) |
| 8 | nfv | |- F/ v u = <. x , y >. |
|
| 9 | 8 2 | nfan | |- F/ v ( u = <. x , y >. /\ ph ) |
| 10 | nfv | |- F/ x u = <. w , v >. |
|
| 11 | 10 3 | nfan | |- F/ x ( u = <. w , v >. /\ ps ) |
| 12 | nfv | |- F/ y u = <. w , v >. |
|
| 13 | 12 4 | nfan | |- F/ y ( u = <. w , v >. /\ ps ) |
| 14 | opeq12 | |- ( ( x = w /\ y = v ) -> <. x , y >. = <. w , v >. ) |
|
| 15 | 14 | eqeq2d | |- ( ( x = w /\ y = v ) -> ( u = <. x , y >. <-> u = <. w , v >. ) ) |
| 16 | 15 5 | anbi12d | |- ( ( x = w /\ y = v ) -> ( ( u = <. x , y >. /\ ph ) <-> ( u = <. w , v >. /\ ps ) ) ) |
| 17 | 7 9 11 13 16 | cbvex2v | |- ( E. x E. y ( u = <. x , y >. /\ ph ) <-> E. w E. v ( u = <. w , v >. /\ ps ) ) |
| 18 | 17 | opabbii | |- { <. u , z >. | E. x E. y ( u = <. x , y >. /\ ph ) } = { <. u , z >. | E. w E. v ( u = <. w , v >. /\ ps ) } |
| 19 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. u , z >. | E. x E. y ( u = <. x , y >. /\ ph ) } |
|
| 20 | dfoprab2 | |- { <. <. w , v >. , z >. | ps } = { <. u , z >. | E. w E. v ( u = <. w , v >. /\ ps ) } |
|
| 21 | 18 19 20 | 3eqtr4i | |- { <. <. x , y >. , z >. | ph } = { <. <. w , v >. , z >. | ps } |