This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvoprab3.1 | |- F/ w ph |
|
| cbvoprab3.2 | |- F/ z ps |
||
| cbvoprab3.3 | |- ( z = w -> ( ph <-> ps ) ) |
||
| Assertion | cbvoprab3 | |- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , w >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvoprab3.1 | |- F/ w ph |
|
| 2 | cbvoprab3.2 | |- F/ z ps |
|
| 3 | cbvoprab3.3 | |- ( z = w -> ( ph <-> ps ) ) |
|
| 4 | nfv | |- F/ w v = <. x , y >. |
|
| 5 | 4 1 | nfan | |- F/ w ( v = <. x , y >. /\ ph ) |
| 6 | 5 | nfex | |- F/ w E. y ( v = <. x , y >. /\ ph ) |
| 7 | 6 | nfex | |- F/ w E. x E. y ( v = <. x , y >. /\ ph ) |
| 8 | nfv | |- F/ z v = <. x , y >. |
|
| 9 | 8 2 | nfan | |- F/ z ( v = <. x , y >. /\ ps ) |
| 10 | 9 | nfex | |- F/ z E. y ( v = <. x , y >. /\ ps ) |
| 11 | 10 | nfex | |- F/ z E. x E. y ( v = <. x , y >. /\ ps ) |
| 12 | 3 | anbi2d | |- ( z = w -> ( ( v = <. x , y >. /\ ph ) <-> ( v = <. x , y >. /\ ps ) ) ) |
| 13 | 12 | 2exbidv | |- ( z = w -> ( E. x E. y ( v = <. x , y >. /\ ph ) <-> E. x E. y ( v = <. x , y >. /\ ps ) ) ) |
| 14 | 7 11 13 | cbvopab2 | |- { <. v , z >. | E. x E. y ( v = <. x , y >. /\ ph ) } = { <. v , w >. | E. x E. y ( v = <. x , y >. /\ ps ) } |
| 15 | dfoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. v , z >. | E. x E. y ( v = <. x , y >. /\ ph ) } |
|
| 16 | dfoprab2 | |- { <. <. x , y >. , w >. | ps } = { <. v , w >. | E. x E. y ( v = <. x , y >. /\ ps ) } |
|
| 17 | 14 15 16 | 3eqtr4i | |- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , w >. | ps } |