This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function into a (proper) triple. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| tpf.t | |- T = { A , B , C } |
||
| Assertion | tpf | |- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) --> T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| 2 | tpf.t | |- T = { A , B , C } |
|
| 3 | tpid1g | |- ( A e. V -> A e. { A , B , C } ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( A e. V /\ B e. V /\ C e. V ) -> A e. { A , B , C } ) |
| 5 | tpid2g | |- ( B e. V -> B e. { A , B , C } ) |
|
| 6 | 5 | 3ad2ant2 | |- ( ( A e. V /\ B e. V /\ C e. V ) -> B e. { A , B , C } ) |
| 7 | tpid3g | |- ( C e. V -> C e. { A , B , C } ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( A e. V /\ B e. V /\ C e. V ) -> C e. { A , B , C } ) |
| 9 | 6 8 | ifcld | |- ( ( A e. V /\ B e. V /\ C e. V ) -> if ( x = 1 , B , C ) e. { A , B , C } ) |
| 10 | 4 9 | ifcld | |- ( ( A e. V /\ B e. V /\ C e. V ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) e. { A , B , C } ) |
| 11 | 10 2 | eleqtrrdi | |- ( ( A e. V /\ B e. V /\ C e. V ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) e. T ) |
| 12 | 11 | adantr | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ x e. ( 0 ..^ 3 ) ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) e. T ) |
| 13 | 12 1 | fmptd | |- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) --> T ) |