This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijection onto a (proper) triple. (Contributed by AV, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| tpf.t | |- T = { A , B , C } |
||
| Assertion | tpf1o | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> F : ( 0 ..^ 3 ) -1-1-onto-> T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| 2 | tpf.t | |- T = { A , B , C } |
|
| 3 | 1 2 | tpfo | |- ( ( A e. V /\ B e. V /\ C e. V ) -> F : ( 0 ..^ 3 ) -onto-> T ) |
| 4 | 3 | adantr | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> F : ( 0 ..^ 3 ) -onto-> T ) |
| 5 | 3nn0 | |- 3 e. NN0 |
|
| 6 | hashfzo0 | |- ( 3 e. NN0 -> ( # ` ( 0 ..^ 3 ) ) = 3 ) |
|
| 7 | 5 6 | ax-mp | |- ( # ` ( 0 ..^ 3 ) ) = 3 |
| 8 | eqcom | |- ( ( # ` T ) = 3 <-> 3 = ( # ` T ) ) |
|
| 9 | 8 | biimpi | |- ( ( # ` T ) = 3 -> 3 = ( # ` T ) ) |
| 10 | 9 | adantl | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> 3 = ( # ` T ) ) |
| 11 | 7 10 | eqtrid | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> ( # ` ( 0 ..^ 3 ) ) = ( # ` T ) ) |
| 12 | fzofi | |- ( 0 ..^ 3 ) e. Fin |
|
| 13 | 12 | a1i | |- ( ( A e. V /\ B e. V /\ C e. V ) -> ( 0 ..^ 3 ) e. Fin ) |
| 14 | tpfi | |- { A , B , C } e. Fin |
|
| 15 | 2 14 | eqeltri | |- T e. Fin |
| 16 | 15 | a1i | |- ( ( # ` T ) = 3 -> T e. Fin ) |
| 17 | hashen | |- ( ( ( 0 ..^ 3 ) e. Fin /\ T e. Fin ) -> ( ( # ` ( 0 ..^ 3 ) ) = ( # ` T ) <-> ( 0 ..^ 3 ) ~~ T ) ) |
|
| 18 | 13 16 17 | syl2an | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> ( ( # ` ( 0 ..^ 3 ) ) = ( # ` T ) <-> ( 0 ..^ 3 ) ~~ T ) ) |
| 19 | 11 18 | mpbid | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> ( 0 ..^ 3 ) ~~ T ) |
| 20 | 15 | a1i | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> T e. Fin ) |
| 21 | fofinf1o | |- ( ( F : ( 0 ..^ 3 ) -onto-> T /\ ( 0 ..^ 3 ) ~~ T /\ T e. Fin ) -> F : ( 0 ..^ 3 ) -1-1-onto-> T ) |
|
| 22 | 4 19 20 21 | syl3anc | |- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( # ` T ) = 3 ) -> F : ( 0 ..^ 3 ) -1-1-onto-> T ) |