This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a one-to-one function onto a triple at 1. (Contributed by AV, 20-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| Assertion | tpf1ofv1 | |- ( B e. V -> ( F ` 1 ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpf1o.f | |- F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) |
|
| 2 | 1 | a1i | |- ( B e. V -> F = ( x e. ( 0 ..^ 3 ) |-> if ( x = 0 , A , if ( x = 1 , B , C ) ) ) ) |
| 3 | ax-1ne0 | |- 1 =/= 0 |
|
| 4 | 3 | neii | |- -. 1 = 0 |
| 5 | eqeq1 | |- ( x = 1 -> ( x = 0 <-> 1 = 0 ) ) |
|
| 6 | 4 5 | mtbiri | |- ( x = 1 -> -. x = 0 ) |
| 7 | 6 | iffalsed | |- ( x = 1 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = if ( x = 1 , B , C ) ) |
| 8 | iftrue | |- ( x = 1 -> if ( x = 1 , B , C ) = B ) |
|
| 9 | 7 8 | eqtrd | |- ( x = 1 -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = B ) |
| 10 | 9 | adantl | |- ( ( B e. V /\ x = 1 ) -> if ( x = 0 , A , if ( x = 1 , B , C ) ) = B ) |
| 11 | 1nn0 | |- 1 e. NN0 |
|
| 12 | 3nn | |- 3 e. NN |
|
| 13 | 1lt3 | |- 1 < 3 |
|
| 14 | elfzo0 | |- ( 1 e. ( 0 ..^ 3 ) <-> ( 1 e. NN0 /\ 3 e. NN /\ 1 < 3 ) ) |
|
| 15 | 11 12 13 14 | mpbir3an | |- 1 e. ( 0 ..^ 3 ) |
| 16 | 15 | a1i | |- ( B e. V -> 1 e. ( 0 ..^ 3 ) ) |
| 17 | id | |- ( B e. V -> B e. V ) |
|
| 18 | 2 10 16 17 | fvmptd | |- ( B e. V -> ( F ` 1 ) = B ) |