This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function which augments a given structure G with a norm N . (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngval.t | |- T = ( G toNrmGrp N ) |
|
| tngval.m | |- .- = ( -g ` G ) |
||
| tngval.d | |- D = ( N o. .- ) |
||
| tngval.j | |- J = ( MetOpen ` D ) |
||
| Assertion | tngval | |- ( ( G e. V /\ N e. W ) -> T = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngval.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngval.m | |- .- = ( -g ` G ) |
|
| 3 | tngval.d | |- D = ( N o. .- ) |
|
| 4 | tngval.j | |- J = ( MetOpen ` D ) |
|
| 5 | elex | |- ( G e. V -> G e. _V ) |
|
| 6 | elex | |- ( N e. W -> N e. _V ) |
|
| 7 | simpl | |- ( ( g = G /\ f = N ) -> g = G ) |
|
| 8 | simpr | |- ( ( g = G /\ f = N ) -> f = N ) |
|
| 9 | 7 | fveq2d | |- ( ( g = G /\ f = N ) -> ( -g ` g ) = ( -g ` G ) ) |
| 10 | 9 2 | eqtr4di | |- ( ( g = G /\ f = N ) -> ( -g ` g ) = .- ) |
| 11 | 8 10 | coeq12d | |- ( ( g = G /\ f = N ) -> ( f o. ( -g ` g ) ) = ( N o. .- ) ) |
| 12 | 11 3 | eqtr4di | |- ( ( g = G /\ f = N ) -> ( f o. ( -g ` g ) ) = D ) |
| 13 | 12 | opeq2d | |- ( ( g = G /\ f = N ) -> <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. = <. ( dist ` ndx ) , D >. ) |
| 14 | 7 13 | oveq12d | |- ( ( g = G /\ f = N ) -> ( g sSet <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. ) = ( G sSet <. ( dist ` ndx ) , D >. ) ) |
| 15 | 12 | fveq2d | |- ( ( g = G /\ f = N ) -> ( MetOpen ` ( f o. ( -g ` g ) ) ) = ( MetOpen ` D ) ) |
| 16 | 15 4 | eqtr4di | |- ( ( g = G /\ f = N ) -> ( MetOpen ` ( f o. ( -g ` g ) ) ) = J ) |
| 17 | 16 | opeq2d | |- ( ( g = G /\ f = N ) -> <. ( TopSet ` ndx ) , ( MetOpen ` ( f o. ( -g ` g ) ) ) >. = <. ( TopSet ` ndx ) , J >. ) |
| 18 | 14 17 | oveq12d | |- ( ( g = G /\ f = N ) -> ( ( g sSet <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( f o. ( -g ` g ) ) ) >. ) = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| 19 | df-tng | |- toNrmGrp = ( g e. _V , f e. _V |-> ( ( g sSet <. ( dist ` ndx ) , ( f o. ( -g ` g ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( f o. ( -g ` g ) ) ) >. ) ) |
|
| 20 | ovex | |- ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) e. _V |
|
| 21 | 18 19 20 | ovmpoa | |- ( ( G e. _V /\ N e. _V ) -> ( G toNrmGrp N ) = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| 22 | 5 6 21 | syl2an | |- ( ( G e. V /\ N e. W ) -> ( G toNrmGrp N ) = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |
| 23 | 1 22 | eqtrid | |- ( ( G e. V /\ N e. W ) -> T = ( ( G sSet <. ( dist ` ndx ) , D >. ) sSet <. ( TopSet ` ndx ) , J >. ) ) |