This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
||
| tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
||
| Assertion | tmsxps | |- ( ph -> P e. ( *Met ` ( X X. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 2 | tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
|
| 3 | tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
|
| 4 | eqid | |- ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) = ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) |
|
| 5 | eqid | |- ( Base ` ( toMetSp ` M ) ) = ( Base ` ( toMetSp ` M ) ) |
|
| 6 | eqid | |- ( Base ` ( toMetSp ` N ) ) = ( Base ` ( toMetSp ` N ) ) |
|
| 7 | eqid | |- ( toMetSp ` M ) = ( toMetSp ` M ) |
|
| 8 | 7 | tmsxms | |- ( M e. ( *Met ` X ) -> ( toMetSp ` M ) e. *MetSp ) |
| 9 | 2 8 | syl | |- ( ph -> ( toMetSp ` M ) e. *MetSp ) |
| 10 | eqid | |- ( toMetSp ` N ) = ( toMetSp ` N ) |
|
| 11 | 10 | tmsxms | |- ( N e. ( *Met ` Y ) -> ( toMetSp ` N ) e. *MetSp ) |
| 12 | 3 11 | syl | |- ( ph -> ( toMetSp ` N ) e. *MetSp ) |
| 13 | 4 5 6 9 12 1 | xpsdsfn2 | |- ( ph -> P Fn ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 14 | fnresdm | |- ( P Fn ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = P ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = P ) |
| 16 | 4 | xpsxms | |- ( ( ( toMetSp ` M ) e. *MetSp /\ ( toMetSp ` N ) e. *MetSp ) -> ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp ) |
| 17 | 9 12 16 | syl2anc | |- ( ph -> ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp ) |
| 18 | eqid | |- ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 19 | 18 1 | xmsxmet2 | |- ( ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) e. ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 20 | 17 19 | syl | |- ( ph -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) e. ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 21 | 15 20 | eqeltrrd | |- ( ph -> P e. ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 22 | 7 | tmsbas | |- ( M e. ( *Met ` X ) -> X = ( Base ` ( toMetSp ` M ) ) ) |
| 23 | 2 22 | syl | |- ( ph -> X = ( Base ` ( toMetSp ` M ) ) ) |
| 24 | 10 | tmsbas | |- ( N e. ( *Met ` Y ) -> Y = ( Base ` ( toMetSp ` N ) ) ) |
| 25 | 3 24 | syl | |- ( ph -> Y = ( Base ` ( toMetSp ` N ) ) ) |
| 26 | 23 25 | xpeq12d | |- ( ph -> ( X X. Y ) = ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` N ) ) ) ) |
| 27 | 4 5 6 9 12 | xpsbas | |- ( ph -> ( ( Base ` ( toMetSp ` M ) ) X. ( Base ` ( toMetSp ` N ) ) ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) |
| 28 | 26 27 | eqtrd | |- ( ph -> ( X X. Y ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) |
| 29 | 28 | fveq2d | |- ( ph -> ( *Met ` ( X X. Y ) ) = ( *Met ` ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 30 | 21 29 | eleqtrrd | |- ( ph -> P e. ( *Met ` ( X X. Y ) ) ) |