This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
||
| tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
||
| tmsxpsmopn.j | |- J = ( MetOpen ` M ) |
||
| tmsxpsmopn.k | |- K = ( MetOpen ` N ) |
||
| tmsxpsmopn.l | |- L = ( MetOpen ` P ) |
||
| Assertion | tmsxpsmopn | |- ( ph -> L = ( J tX K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsxps.p | |- P = ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 2 | tmsxps.1 | |- ( ph -> M e. ( *Met ` X ) ) |
|
| 3 | tmsxps.2 | |- ( ph -> N e. ( *Met ` Y ) ) |
|
| 4 | tmsxpsmopn.j | |- J = ( MetOpen ` M ) |
|
| 5 | tmsxpsmopn.k | |- K = ( MetOpen ` N ) |
|
| 6 | tmsxpsmopn.l | |- L = ( MetOpen ` P ) |
|
| 7 | eqid | |- ( toMetSp ` M ) = ( toMetSp ` M ) |
|
| 8 | 7 | tmsxms | |- ( M e. ( *Met ` X ) -> ( toMetSp ` M ) e. *MetSp ) |
| 9 | 2 8 | syl | |- ( ph -> ( toMetSp ` M ) e. *MetSp ) |
| 10 | xmstps | |- ( ( toMetSp ` M ) e. *MetSp -> ( toMetSp ` M ) e. TopSp ) |
|
| 11 | 9 10 | syl | |- ( ph -> ( toMetSp ` M ) e. TopSp ) |
| 12 | eqid | |- ( toMetSp ` N ) = ( toMetSp ` N ) |
|
| 13 | 12 | tmsxms | |- ( N e. ( *Met ` Y ) -> ( toMetSp ` N ) e. *MetSp ) |
| 14 | 3 13 | syl | |- ( ph -> ( toMetSp ` N ) e. *MetSp ) |
| 15 | xmstps | |- ( ( toMetSp ` N ) e. *MetSp -> ( toMetSp ` N ) e. TopSp ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( toMetSp ` N ) e. TopSp ) |
| 17 | eqid | |- ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) = ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) |
|
| 18 | eqid | |- ( TopOpen ` ( toMetSp ` M ) ) = ( TopOpen ` ( toMetSp ` M ) ) |
|
| 19 | eqid | |- ( TopOpen ` ( toMetSp ` N ) ) = ( TopOpen ` ( toMetSp ` N ) ) |
|
| 20 | eqid | |- ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 21 | 17 18 19 20 | xpstopn | |- ( ( ( toMetSp ` M ) e. TopSp /\ ( toMetSp ` N ) e. TopSp ) -> ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( ( TopOpen ` ( toMetSp ` M ) ) tX ( TopOpen ` ( toMetSp ` N ) ) ) ) |
| 22 | 11 16 21 | syl2anc | |- ( ph -> ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( ( TopOpen ` ( toMetSp ` M ) ) tX ( TopOpen ` ( toMetSp ` N ) ) ) ) |
| 23 | 17 | xpsxms | |- ( ( ( toMetSp ` M ) e. *MetSp /\ ( toMetSp ` N ) e. *MetSp ) -> ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp ) |
| 24 | 9 14 23 | syl2anc | |- ( ph -> ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp ) |
| 25 | eqid | |- ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |
|
| 26 | 1 | reseq1i | |- ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = ( ( dist ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 27 | 20 25 26 | xmstopn | |- ( ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) e. *MetSp -> ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( MetOpen ` ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) ) ) |
| 28 | 24 27 | syl | |- ( ph -> ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) = ( MetOpen ` ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) ) ) |
| 29 | eqid | |- ( Base ` ( toMetSp ` M ) ) = ( Base ` ( toMetSp ` M ) ) |
|
| 30 | eqid | |- ( Base ` ( toMetSp ` N ) ) = ( Base ` ( toMetSp ` N ) ) |
|
| 31 | 17 29 30 9 14 1 | xpsdsfn2 | |- ( ph -> P Fn ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) |
| 32 | fnresdm | |- ( P Fn ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = P ) |
|
| 33 | 31 32 | syl | |- ( ph -> ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) = P ) |
| 34 | 33 | fveq2d | |- ( ph -> ( MetOpen ` ( P |` ( ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) X. ( Base ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) ) ) = ( MetOpen ` P ) ) |
| 35 | 28 34 | eqtr2d | |- ( ph -> ( MetOpen ` P ) = ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) |
| 36 | 6 35 | eqtrid | |- ( ph -> L = ( TopOpen ` ( ( toMetSp ` M ) Xs. ( toMetSp ` N ) ) ) ) |
| 37 | 7 4 | tmstopn | |- ( M e. ( *Met ` X ) -> J = ( TopOpen ` ( toMetSp ` M ) ) ) |
| 38 | 2 37 | syl | |- ( ph -> J = ( TopOpen ` ( toMetSp ` M ) ) ) |
| 39 | 12 5 | tmstopn | |- ( N e. ( *Met ` Y ) -> K = ( TopOpen ` ( toMetSp ` N ) ) ) |
| 40 | 3 39 | syl | |- ( ph -> K = ( TopOpen ` ( toMetSp ` N ) ) ) |
| 41 | 38 40 | oveq12d | |- ( ph -> ( J tX K ) = ( ( TopOpen ` ( toMetSp ` M ) ) tX ( TopOpen ` ( toMetSp ` N ) ) ) ) |
| 42 | 22 36 41 | 3eqtr4d | |- ( ph -> L = ( J tX K ) ) |