This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constructed metric space is an extended metric space. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tmsbas.k | |- K = ( toMetSp ` D ) |
|
| Assertion | tmsxms | |- ( D e. ( *Met ` X ) -> K e. *MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tmsbas.k | |- K = ( toMetSp ` D ) |
|
| 2 | 1 | tmsds | |- ( D e. ( *Met ` X ) -> D = ( dist ` K ) ) |
| 3 | 1 | tmsbas | |- ( D e. ( *Met ` X ) -> X = ( Base ` K ) ) |
| 4 | 3 | fveq2d | |- ( D e. ( *Met ` X ) -> ( *Met ` X ) = ( *Met ` ( Base ` K ) ) ) |
| 5 | 2 4 | eleq12d | |- ( D e. ( *Met ` X ) -> ( D e. ( *Met ` X ) <-> ( dist ` K ) e. ( *Met ` ( Base ` K ) ) ) ) |
| 6 | 5 | ibi | |- ( D e. ( *Met ` X ) -> ( dist ` K ) e. ( *Met ` ( Base ` K ) ) ) |
| 7 | ssid | |- ( Base ` K ) C_ ( Base ` K ) |
|
| 8 | xmetres2 | |- ( ( ( dist ` K ) e. ( *Met ` ( Base ` K ) ) /\ ( Base ` K ) C_ ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
|
| 9 | 6 7 8 | sylancl | |- ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) ) |
| 10 | xmetf | |- ( ( dist ` K ) e. ( *Met ` ( Base ` K ) ) -> ( dist ` K ) : ( ( Base ` K ) X. ( Base ` K ) ) --> RR* ) |
|
| 11 | ffn | |- ( ( dist ` K ) : ( ( Base ` K ) X. ( Base ` K ) ) --> RR* -> ( dist ` K ) Fn ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 12 | fnresdm | |- ( ( dist ` K ) Fn ( ( Base ` K ) X. ( Base ` K ) ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( dist ` K ) ) |
|
| 13 | 6 10 11 12 | 4syl | |- ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( dist ` K ) ) |
| 14 | 13 2 | eqtr4d | |- ( D e. ( *Met ` X ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = D ) |
| 15 | 14 | fveq2d | |- ( D e. ( *Met ` X ) -> ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) = ( MetOpen ` D ) ) |
| 16 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 17 | 1 16 | tmstopn | |- ( D e. ( *Met ` X ) -> ( MetOpen ` D ) = ( TopOpen ` K ) ) |
| 18 | 15 17 | eqtr2d | |- ( D e. ( *Met ` X ) -> ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 19 | eqid | |- ( TopOpen ` K ) = ( TopOpen ` K ) |
|
| 20 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 21 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 22 | 19 20 21 | isxms2 | |- ( K e. *MetSp <-> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( *Met ` ( Base ` K ) ) /\ ( TopOpen ` K ) = ( MetOpen ` ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) ) |
| 23 | 9 18 22 | sylanbrc | |- ( D e. ( *Met ` X ) -> K e. *MetSp ) |