This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a set with at most one element to a class is injective. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1mo | |- ( ( E* x x e. A /\ F : A --> B ) -> F : A -1-1-> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mo0sn | |- ( E* x x e. A <-> ( A = (/) \/ E. y A = { y } ) ) |
|
| 2 | f102g | |- ( ( A = (/) /\ F : A --> B ) -> F : A -1-1-> B ) |
|
| 3 | vex | |- y e. _V |
|
| 4 | f1sn2g | |- ( ( y e. _V /\ F : { y } --> B ) -> F : { y } -1-1-> B ) |
|
| 5 | 3 4 | mpan | |- ( F : { y } --> B -> F : { y } -1-1-> B ) |
| 6 | feq2 | |- ( A = { y } -> ( F : A --> B <-> F : { y } --> B ) ) |
|
| 7 | f1eq2 | |- ( A = { y } -> ( F : A -1-1-> B <-> F : { y } -1-1-> B ) ) |
|
| 8 | 6 7 | imbi12d | |- ( A = { y } -> ( ( F : A --> B -> F : A -1-1-> B ) <-> ( F : { y } --> B -> F : { y } -1-1-> B ) ) ) |
| 9 | 5 8 | mpbiri | |- ( A = { y } -> ( F : A --> B -> F : A -1-1-> B ) ) |
| 10 | 9 | exlimiv | |- ( E. y A = { y } -> ( F : A --> B -> F : A -1-1-> B ) ) |
| 11 | 10 | imp | |- ( ( E. y A = { y } /\ F : A --> B ) -> F : A -1-1-> B ) |
| 12 | 2 11 | jaoian | |- ( ( ( A = (/) \/ E. y A = { y } ) /\ F : A --> B ) -> F : A -1-1-> B ) |
| 13 | 1 12 | sylanb | |- ( ( E* x x e. A /\ F : A --> B ) -> F : A -1-1-> B ) |