This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Let A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in A for later use. (Contributed by NM, 9-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfrlem3.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| tfrlem3.2 | |- G e. _V |
||
| Assertion | tfrlem3a | |- ( G e. A <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | tfrlem3.2 | |- G e. _V |
|
| 3 | fneq12 | |- ( ( f = G /\ x = z ) -> ( f Fn x <-> G Fn z ) ) |
|
| 4 | simpll | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> f = G ) |
|
| 5 | simpr | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> y = w ) |
|
| 6 | 4 5 | fveq12d | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f ` y ) = ( G ` w ) ) |
| 7 | 4 5 | reseq12d | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( f |` y ) = ( G |` w ) ) |
| 8 | 7 | fveq2d | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( F ` ( f |` y ) ) = ( F ` ( G |` w ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( G ` w ) = ( F ` ( G |` w ) ) ) ) |
| 10 | simplr | |- ( ( ( f = G /\ x = z ) /\ y = w ) -> x = z ) |
|
| 11 | 9 10 | cbvraldva2 | |- ( ( f = G /\ x = z ) -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) |
| 12 | 3 11 | anbi12d | |- ( ( f = G /\ x = z ) -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) ) |
| 13 | 12 | cbvrexdva | |- ( f = G -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) ) |
| 14 | 2 13 1 | elab2 | |- ( G e. A <-> E. z e. On ( G Fn z /\ A. w e. z ( G ` w ) = ( F ` ( G |` w ) ) ) ) |