This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Here we compute the value of recs (the union of all acceptable functions). (Contributed by NM, 17-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem9 | |- ( B e. dom recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | eldm2g | |- ( B e. dom recs ( F ) -> ( B e. dom recs ( F ) <-> E. z <. B , z >. e. recs ( F ) ) ) |
|
| 3 | 2 | ibi | |- ( B e. dom recs ( F ) -> E. z <. B , z >. e. recs ( F ) ) |
| 4 | dfrecs3 | |- recs ( F ) = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 5 | 4 | eleq2i | |- ( <. B , z >. e. recs ( F ) <-> <. B , z >. e. U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } ) |
| 6 | eluniab | |- ( <. B , z >. e. U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } <-> E. f ( <. B , z >. e. f /\ E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
|
| 7 | 5 6 | bitri | |- ( <. B , z >. e. recs ( F ) <-> E. f ( <. B , z >. e. f /\ E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
| 8 | fnop | |- ( ( f Fn x /\ <. B , z >. e. f ) -> B e. x ) |
|
| 9 | rspe | |- ( ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
|
| 10 | 1 | eqabri | |- ( f e. A <-> E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
| 11 | elssuni | |- ( f e. A -> f C_ U. A ) |
|
| 12 | 1 | recsfval | |- recs ( F ) = U. A |
| 13 | 11 12 | sseqtrrdi | |- ( f e. A -> f C_ recs ( F ) ) |
| 14 | 10 13 | sylbir | |- ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) -> f C_ recs ( F ) ) |
| 15 | 9 14 | syl | |- ( ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> f C_ recs ( F ) ) |
| 16 | fveq2 | |- ( y = B -> ( f ` y ) = ( f ` B ) ) |
|
| 17 | reseq2 | |- ( y = B -> ( f |` y ) = ( f |` B ) ) |
|
| 18 | 17 | fveq2d | |- ( y = B -> ( F ` ( f |` y ) ) = ( F ` ( f |` B ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = B -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( f ` B ) = ( F ` ( f |` B ) ) ) ) |
| 20 | 19 | rspcv | |- ( B e. x -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( f ` B ) = ( F ` ( f |` B ) ) ) ) |
| 21 | fndm | |- ( f Fn x -> dom f = x ) |
|
| 22 | 21 | eleq2d | |- ( f Fn x -> ( B e. dom f <-> B e. x ) ) |
| 23 | 1 | tfrlem7 | |- Fun recs ( F ) |
| 24 | funssfv | |- ( ( Fun recs ( F ) /\ f C_ recs ( F ) /\ B e. dom f ) -> ( recs ( F ) ` B ) = ( f ` B ) ) |
|
| 25 | 23 24 | mp3an1 | |- ( ( f C_ recs ( F ) /\ B e. dom f ) -> ( recs ( F ) ` B ) = ( f ` B ) ) |
| 26 | 25 | adantrl | |- ( ( f C_ recs ( F ) /\ ( ( f Fn x /\ x e. On ) /\ B e. dom f ) ) -> ( recs ( F ) ` B ) = ( f ` B ) ) |
| 27 | 21 | eleq1d | |- ( f Fn x -> ( dom f e. On <-> x e. On ) ) |
| 28 | onelss | |- ( dom f e. On -> ( B e. dom f -> B C_ dom f ) ) |
|
| 29 | 27 28 | biimtrrdi | |- ( f Fn x -> ( x e. On -> ( B e. dom f -> B C_ dom f ) ) ) |
| 30 | 29 | imp31 | |- ( ( ( f Fn x /\ x e. On ) /\ B e. dom f ) -> B C_ dom f ) |
| 31 | fun2ssres | |- ( ( Fun recs ( F ) /\ f C_ recs ( F ) /\ B C_ dom f ) -> ( recs ( F ) |` B ) = ( f |` B ) ) |
|
| 32 | 31 | fveq2d | |- ( ( Fun recs ( F ) /\ f C_ recs ( F ) /\ B C_ dom f ) -> ( F ` ( recs ( F ) |` B ) ) = ( F ` ( f |` B ) ) ) |
| 33 | 23 32 | mp3an1 | |- ( ( f C_ recs ( F ) /\ B C_ dom f ) -> ( F ` ( recs ( F ) |` B ) ) = ( F ` ( f |` B ) ) ) |
| 34 | 30 33 | sylan2 | |- ( ( f C_ recs ( F ) /\ ( ( f Fn x /\ x e. On ) /\ B e. dom f ) ) -> ( F ` ( recs ( F ) |` B ) ) = ( F ` ( f |` B ) ) ) |
| 35 | 26 34 | eqeq12d | |- ( ( f C_ recs ( F ) /\ ( ( f Fn x /\ x e. On ) /\ B e. dom f ) ) -> ( ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) <-> ( f ` B ) = ( F ` ( f |` B ) ) ) ) |
| 36 | 35 | exbiri | |- ( f C_ recs ( F ) -> ( ( ( f Fn x /\ x e. On ) /\ B e. dom f ) -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) |
| 37 | 36 | com3l | |- ( ( ( f Fn x /\ x e. On ) /\ B e. dom f ) -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) |
| 38 | 37 | exp31 | |- ( f Fn x -> ( x e. On -> ( B e. dom f -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 39 | 38 | com34 | |- ( f Fn x -> ( x e. On -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( B e. dom f -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 40 | 39 | com24 | |- ( f Fn x -> ( B e. dom f -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( x e. On -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 41 | 22 40 | sylbird | |- ( f Fn x -> ( B e. x -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( x e. On -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 42 | 41 | com3l | |- ( B e. x -> ( ( f ` B ) = ( F ` ( f |` B ) ) -> ( f Fn x -> ( x e. On -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 43 | 20 42 | syld | |- ( B e. x -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( f Fn x -> ( x e. On -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 44 | 43 | com24 | |- ( B e. x -> ( x e. On -> ( f Fn x -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 45 | 44 | imp4d | |- ( B e. x -> ( ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> ( f C_ recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) |
| 46 | 15 45 | mpdi | |- ( B e. x -> ( ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) |
| 47 | 8 46 | syl | |- ( ( f Fn x /\ <. B , z >. e. f ) -> ( ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) |
| 48 | 47 | exp4d | |- ( ( f Fn x /\ <. B , z >. e. f ) -> ( x e. On -> ( f Fn x -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) |
| 49 | 48 | ex | |- ( f Fn x -> ( <. B , z >. e. f -> ( x e. On -> ( f Fn x -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 50 | 49 | com4r | |- ( f Fn x -> ( f Fn x -> ( <. B , z >. e. f -> ( x e. On -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) ) |
| 51 | 50 | pm2.43i | |- ( f Fn x -> ( <. B , z >. e. f -> ( x e. On -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) |
| 52 | 51 | com3l | |- ( <. B , z >. e. f -> ( x e. On -> ( f Fn x -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) ) |
| 53 | 52 | imp4a | |- ( <. B , z >. e. f -> ( x e. On -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) ) |
| 54 | 53 | rexlimdv | |- ( <. B , z >. e. f -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) |
| 55 | 54 | imp | |- ( ( <. B , z >. e. f /\ E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 56 | 55 | exlimiv | |- ( E. f ( <. B , z >. e. f /\ E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 57 | 7 56 | sylbi | |- ( <. B , z >. e. recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 58 | 57 | exlimiv | |- ( E. z <. B , z >. e. recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 59 | 3 58 | syl | |- ( B e. dom recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |