This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-ordered recursion. (Contributed by Scott Fenton, 3-Aug-2020) (Proof revised by Scott Fenton, 18-Nov-2024.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrecs3 | |- recs ( F ) = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-recs | |- recs ( F ) = wrecs ( _E , On , F ) |
|
| 2 | df-wrecs | |- wrecs ( _E , On , F ) = frecs ( _E , On , ( F o. 2nd ) ) |
|
| 3 | df-frecs | |- frecs ( _E , On , ( F o. 2nd ) ) = U. { f | E. x ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) } |
|
| 4 | 3anass | |- ( ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> ( f Fn x /\ ( ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) ) ) |
|
| 5 | vex | |- x e. _V |
|
| 6 | 5 | elon | |- ( x e. On <-> Ord x ) |
| 7 | ordsson | |- ( Ord x -> x C_ On ) |
|
| 8 | ordtr | |- ( Ord x -> Tr x ) |
|
| 9 | 7 8 | jca | |- ( Ord x -> ( x C_ On /\ Tr x ) ) |
| 10 | epweon | |- _E We On |
|
| 11 | wess | |- ( x C_ On -> ( _E We On -> _E We x ) ) |
|
| 12 | 10 11 | mpi | |- ( x C_ On -> _E We x ) |
| 13 | 12 | anim1ci | |- ( ( x C_ On /\ Tr x ) -> ( Tr x /\ _E We x ) ) |
| 14 | df-ord | |- ( Ord x <-> ( Tr x /\ _E We x ) ) |
|
| 15 | 13 14 | sylibr | |- ( ( x C_ On /\ Tr x ) -> Ord x ) |
| 16 | 9 15 | impbii | |- ( Ord x <-> ( x C_ On /\ Tr x ) ) |
| 17 | dftr3 | |- ( Tr x <-> A. y e. x y C_ x ) |
|
| 18 | ssel2 | |- ( ( x C_ On /\ y e. x ) -> y e. On ) |
|
| 19 | predon | |- ( y e. On -> Pred ( _E , On , y ) = y ) |
|
| 20 | 19 | sseq1d | |- ( y e. On -> ( Pred ( _E , On , y ) C_ x <-> y C_ x ) ) |
| 21 | 18 20 | syl | |- ( ( x C_ On /\ y e. x ) -> ( Pred ( _E , On , y ) C_ x <-> y C_ x ) ) |
| 22 | 21 | ralbidva | |- ( x C_ On -> ( A. y e. x Pred ( _E , On , y ) C_ x <-> A. y e. x y C_ x ) ) |
| 23 | 17 22 | bitr4id | |- ( x C_ On -> ( Tr x <-> A. y e. x Pred ( _E , On , y ) C_ x ) ) |
| 24 | 23 | pm5.32i | |- ( ( x C_ On /\ Tr x ) <-> ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) ) |
| 25 | 6 16 24 | 3bitri | |- ( x e. On <-> ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) ) |
| 26 | 25 | anbi1i | |- ( ( x e. On /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> ( ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) ) |
| 27 | onelon | |- ( ( x e. On /\ y e. x ) -> y e. On ) |
|
| 28 | 27 19 | syl | |- ( ( x e. On /\ y e. x ) -> Pred ( _E , On , y ) = y ) |
| 29 | 28 | reseq2d | |- ( ( x e. On /\ y e. x ) -> ( f |` Pred ( _E , On , y ) ) = ( f |` y ) ) |
| 30 | 29 | oveq2d | |- ( ( x e. On /\ y e. x ) -> ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) = ( y ( F o. 2nd ) ( f |` y ) ) ) |
| 31 | id | |- ( y e. x -> y e. x ) |
|
| 32 | vex | |- f e. _V |
|
| 33 | 32 | resex | |- ( f |` y ) e. _V |
| 34 | 33 | a1i | |- ( y e. x -> ( f |` y ) e. _V ) |
| 35 | 31 34 | opco2 | |- ( y e. x -> ( y ( F o. 2nd ) ( f |` y ) ) = ( F ` ( f |` y ) ) ) |
| 36 | 35 | adantl | |- ( ( x e. On /\ y e. x ) -> ( y ( F o. 2nd ) ( f |` y ) ) = ( F ` ( f |` y ) ) ) |
| 37 | 30 36 | eqtrd | |- ( ( x e. On /\ y e. x ) -> ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) = ( F ` ( f |` y ) ) ) |
| 38 | 37 | eqeq2d | |- ( ( x e. On /\ y e. x ) -> ( ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) <-> ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
| 39 | 38 | ralbidva | |- ( x e. On -> ( A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) <-> A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
| 40 | 39 | pm5.32i | |- ( ( x e. On /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> ( x e. On /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
| 41 | 26 40 | bitr3i | |- ( ( ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> ( x e. On /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
| 42 | 41 | anbi2i | |- ( ( f Fn x /\ ( ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) ) <-> ( f Fn x /\ ( x e. On /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
| 43 | an12 | |- ( ( f Fn x /\ ( x e. On /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) <-> ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
|
| 44 | 4 42 43 | 3bitri | |- ( ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
| 45 | 44 | exbii | |- ( E. x ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> E. x ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
| 46 | df-rex | |- ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. x ( x e. On /\ ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) ) |
|
| 47 | 45 46 | bitr4i | |- ( E. x ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) <-> E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) ) |
| 48 | 47 | abbii | |- { f | E. x ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) } = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
| 49 | 48 | unieqi | |- U. { f | E. x ( f Fn x /\ ( x C_ On /\ A. y e. x Pred ( _E , On , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y ( F o. 2nd ) ( f |` Pred ( _E , On , y ) ) ) ) } = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
| 50 | 3 49 | eqtri | |- frecs ( _E , On , ( F o. 2nd ) ) = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
| 51 | 1 2 50 | 3eqtri | |- recs ( F ) = U. { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |