This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 24-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem5 | |- ( ( g e. A /\ h e. A ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | vex | |- g e. _V |
|
| 3 | 1 2 | tfrlem3a | |- ( g e. A <-> E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
| 4 | vex | |- h e. _V |
|
| 5 | 1 4 | tfrlem3a | |- ( h e. A <-> E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) |
| 6 | reeanv | |- ( E. z e. On E. w e. On ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) <-> ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) ) |
|
| 7 | fveq2 | |- ( a = x -> ( g ` a ) = ( g ` x ) ) |
|
| 8 | fveq2 | |- ( a = x -> ( h ` a ) = ( h ` x ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( a = x -> ( ( g ` a ) = ( h ` a ) <-> ( g ` x ) = ( h ` x ) ) ) |
| 10 | onin | |- ( ( z e. On /\ w e. On ) -> ( z i^i w ) e. On ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) e. On ) |
| 12 | simp2ll | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> g Fn z ) |
|
| 13 | fnfun | |- ( g Fn z -> Fun g ) |
|
| 14 | 12 13 | syl | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> Fun g ) |
| 15 | inss1 | |- ( z i^i w ) C_ z |
|
| 16 | 12 | fndmd | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> dom g = z ) |
| 17 | 15 16 | sseqtrrid | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) C_ dom g ) |
| 18 | 14 17 | jca | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( Fun g /\ ( z i^i w ) C_ dom g ) ) |
| 19 | simp2rl | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> h Fn w ) |
|
| 20 | fnfun | |- ( h Fn w -> Fun h ) |
|
| 21 | 19 20 | syl | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> Fun h ) |
| 22 | inss2 | |- ( z i^i w ) C_ w |
|
| 23 | 19 | fndmd | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> dom h = w ) |
| 24 | 22 23 | sseqtrrid | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( z i^i w ) C_ dom h ) |
| 25 | 21 24 | jca | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( Fun h /\ ( z i^i w ) C_ dom h ) ) |
| 26 | simp2lr | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) |
|
| 27 | ssralv | |- ( ( z i^i w ) C_ z -> ( A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( F ` ( g |` a ) ) ) ) |
|
| 28 | 15 26 27 | mpsyl | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( F ` ( g |` a ) ) ) |
| 29 | simp2rr | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) |
|
| 30 | ssralv | |- ( ( z i^i w ) C_ w -> ( A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) -> A. a e. ( z i^i w ) ( h ` a ) = ( F ` ( h |` a ) ) ) ) |
|
| 31 | 22 29 30 | mpsyl | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( h ` a ) = ( F ` ( h |` a ) ) ) |
| 32 | 11 18 25 28 31 | tfrlem1 | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> A. a e. ( z i^i w ) ( g ` a ) = ( h ` a ) ) |
| 33 | simp3l | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x g u ) |
|
| 34 | fnbr | |- ( ( g Fn z /\ x g u ) -> x e. z ) |
|
| 35 | 12 33 34 | syl2anc | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. z ) |
| 36 | simp3r | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x h v ) |
|
| 37 | fnbr | |- ( ( h Fn w /\ x h v ) -> x e. w ) |
|
| 38 | 19 36 37 | syl2anc | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. w ) |
| 39 | 35 38 | elind | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> x e. ( z i^i w ) ) |
| 40 | 9 32 39 | rspcdva | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( g ` x ) = ( h ` x ) ) |
| 41 | funbrfv | |- ( Fun g -> ( x g u -> ( g ` x ) = u ) ) |
|
| 42 | 14 33 41 | sylc | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( g ` x ) = u ) |
| 43 | funbrfv | |- ( Fun h -> ( x h v -> ( h ` x ) = v ) ) |
|
| 44 | 21 36 43 | sylc | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> ( h ` x ) = v ) |
| 45 | 40 42 44 | 3eqtr3d | |- ( ( ( z e. On /\ w e. On ) /\ ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) /\ ( x g u /\ x h v ) ) -> u = v ) |
| 46 | 45 | 3exp | |- ( ( z e. On /\ w e. On ) -> ( ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) ) |
| 47 | 46 | rexlimivv | |- ( E. z e. On E. w e. On ( ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 48 | 6 47 | sylbir | |- ( ( E. z e. On ( g Fn z /\ A. a e. z ( g ` a ) = ( F ` ( g |` a ) ) ) /\ E. w e. On ( h Fn w /\ A. a e. w ( h ` a ) = ( F ` ( h |` a ) ) ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
| 49 | 3 5 48 | syl2anb | |- ( ( g e. A /\ h e. A ) -> ( ( x g u /\ x h v ) -> u = v ) ) |