This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Assuming ax-rep , dom recs e.V <-> recs e. V , so since dom recs is an ordinal, it must be equal to On . (Contributed by NM, 14-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| Assertion | tfrlem14 | |- dom recs ( F ) = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | 1 | tfrlem13 | |- -. recs ( F ) e. _V |
| 3 | 1 | tfrlem7 | |- Fun recs ( F ) |
| 4 | funex | |- ( ( Fun recs ( F ) /\ dom recs ( F ) e. On ) -> recs ( F ) e. _V ) |
|
| 5 | 3 4 | mpan | |- ( dom recs ( F ) e. On -> recs ( F ) e. _V ) |
| 6 | 2 5 | mto | |- -. dom recs ( F ) e. On |
| 7 | 1 | tfrlem8 | |- Ord dom recs ( F ) |
| 8 | ordeleqon | |- ( Ord dom recs ( F ) <-> ( dom recs ( F ) e. On \/ dom recs ( F ) = On ) ) |
|
| 9 | 7 8 | mpbi | |- ( dom recs ( F ) e. On \/ dom recs ( F ) = On ) |
| 10 | 6 9 | mtpor | |- dom recs ( F ) = On |