This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base is empty iff the functionalized Hom-set operation is empty. (Contributed by Zhi Wang, 23-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homf0 | |- ( ( Base ` C ) = (/) <-> ( Homf ` C ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 4 | 1 2 3 | homffval | |- ( Homf ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) |
| 5 | 0mpo0 | |- ( ( ( Base ` C ) = (/) \/ ( Base ` C ) = (/) ) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) = (/) ) |
|
| 6 | 5 | orcs | |- ( ( Base ` C ) = (/) -> ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x ( Hom ` C ) y ) ) = (/) ) |
| 7 | 4 6 | eqtrid | |- ( ( Base ` C ) = (/) -> ( Homf ` C ) = (/) ) |
| 8 | 1 2 | homffn | |- ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) |
| 9 | f0bi | |- ( ( Homf ` C ) : (/) --> (/) <-> ( Homf ` C ) = (/) ) |
|
| 10 | ffn | |- ( ( Homf ` C ) : (/) --> (/) -> ( Homf ` C ) Fn (/) ) |
|
| 11 | 9 10 | sylbir | |- ( ( Homf ` C ) = (/) -> ( Homf ` C ) Fn (/) ) |
| 12 | fndmu | |- ( ( ( Homf ` C ) Fn ( ( Base ` C ) X. ( Base ` C ) ) /\ ( Homf ` C ) Fn (/) ) -> ( ( Base ` C ) X. ( Base ` C ) ) = (/) ) |
|
| 13 | 8 11 12 | sylancr | |- ( ( Homf ` C ) = (/) -> ( ( Base ` C ) X. ( Base ` C ) ) = (/) ) |
| 14 | xpeq0 | |- ( ( ( Base ` C ) X. ( Base ` C ) ) = (/) <-> ( ( Base ` C ) = (/) \/ ( Base ` C ) = (/) ) ) |
|
| 15 | pm4.25 | |- ( ( Base ` C ) = (/) <-> ( ( Base ` C ) = (/) \/ ( Base ` C ) = (/) ) ) |
|
| 16 | 14 15 | bitr4i | |- ( ( ( Base ` C ) X. ( Base ` C ) ) = (/) <-> ( Base ` C ) = (/) ) |
| 17 | 13 16 | sylib | |- ( ( Homf ` C ) = (/) -> ( Base ` C ) = (/) ) |
| 18 | 7 17 | impbii | |- ( ( Base ` C ) = (/) <-> ( Homf ` C ) = (/) ) |