This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Defining property of the transitive closure function: it is transitive. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tctr | |- Tr ( TC ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trint | |- ( A. y e. { x | ( A C_ x /\ Tr x ) } Tr y -> Tr |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 2 | vex | |- y e. _V |
|
| 3 | sseq2 | |- ( x = y -> ( A C_ x <-> A C_ y ) ) |
|
| 4 | treq | |- ( x = y -> ( Tr x <-> Tr y ) ) |
|
| 5 | 3 4 | anbi12d | |- ( x = y -> ( ( A C_ x /\ Tr x ) <-> ( A C_ y /\ Tr y ) ) ) |
| 6 | 2 5 | elab | |- ( y e. { x | ( A C_ x /\ Tr x ) } <-> ( A C_ y /\ Tr y ) ) |
| 7 | 6 | simprbi | |- ( y e. { x | ( A C_ x /\ Tr x ) } -> Tr y ) |
| 8 | 1 7 | mprg | |- Tr |^| { x | ( A C_ x /\ Tr x ) } |
| 9 | tcvalg | |- ( A e. _V -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
|
| 10 | treq | |- ( ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } -> ( Tr ( TC ` A ) <-> Tr |^| { x | ( A C_ x /\ Tr x ) } ) ) |
|
| 11 | 9 10 | syl | |- ( A e. _V -> ( Tr ( TC ` A ) <-> Tr |^| { x | ( A C_ x /\ Tr x ) } ) ) |
| 12 | 8 11 | mpbiri | |- ( A e. _V -> Tr ( TC ` A ) ) |
| 13 | tr0 | |- Tr (/) |
|
| 14 | fvprc | |- ( -. A e. _V -> ( TC ` A ) = (/) ) |
|
| 15 | treq | |- ( ( TC ` A ) = (/) -> ( Tr ( TC ` A ) <-> Tr (/) ) ) |
|
| 16 | 14 15 | syl | |- ( -. A e. _V -> ( Tr ( TC ` A ) <-> Tr (/) ) ) |
| 17 | 13 16 | mpbiri | |- ( -. A e. _V -> Tr ( TC ` A ) ) |
| 18 | 12 17 | pm2.61i | |- Tr ( TC ` A ) |