This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the tangent function directly in terms of exp . (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanval2 | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | ax-icn | |- _i e. CC |
|
| 4 | 2 3 | mulcomi | |- ( 2 x. _i ) = ( _i x. 2 ) |
| 5 | 4 | oveq2i | |- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. 2 ) ) |
| 6 | sinval | |- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
|
| 7 | 6 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 8 | simpl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> A e. CC ) |
|
| 9 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 10 | 3 8 9 | sylancr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( _i x. A ) e. CC ) |
| 11 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 12 | 10 11 | syl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( exp ` ( _i x. A ) ) e. CC ) |
| 13 | negicn | |- -u _i e. CC |
|
| 14 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 15 | 13 8 14 | sylancr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( -u _i x. A ) e. CC ) |
| 16 | efcl | |- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
|
| 17 | 15 16 | syl | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 18 | 12 17 | subcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 19 | 3 | a1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> _i e. CC ) |
| 20 | 2 | a1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 2 e. CC ) |
| 21 | ine0 | |- _i =/= 0 |
|
| 22 | 21 | a1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> _i =/= 0 ) |
| 23 | 2ne0 | |- 2 =/= 0 |
|
| 24 | 23 | a1i | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> 2 =/= 0 ) |
| 25 | 18 19 20 22 24 | divdiv1d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. 2 ) ) ) |
| 26 | 5 7 25 | 3eqtr4a | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( sin ` A ) = ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) ) |
| 27 | cosval | |- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
|
| 28 | 27 | adantr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
| 29 | 26 28 | oveq12d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( sin ` A ) / ( cos ` A ) ) = ( ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) / ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 30 | 1 29 | eqtrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) / ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) ) |
| 31 | 18 19 22 | divcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) e. CC ) |
| 32 | 12 17 | addcld | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 33 | simpr | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
|
| 34 | 28 33 | eqnetrrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 ) |
| 35 | 32 20 24 | diveq0ad | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) = 0 <-> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) = 0 ) ) |
| 36 | 35 | necon3bid | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 <-> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) ) |
| 37 | 34 36 | mpbid | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) |
| 38 | 31 32 20 37 24 | divcan7d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / 2 ) / ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) = ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
| 39 | 18 19 32 22 37 | divdiv1d | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / _i ) / ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
| 40 | 30 38 39 | 3eqtrd | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |