This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tanadd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` ( A + B ) ) = ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( A + B ) e. CC ) |
| 3 | simpr3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` ( A + B ) ) =/= 0 ) |
|
| 4 | tanval | |- ( ( ( A + B ) e. CC /\ ( cos ` ( A + B ) ) =/= 0 ) -> ( tan ` ( A + B ) ) = ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` ( A + B ) ) = ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) ) |
| 6 | sinadd | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
|
| 7 | 6 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
| 8 | cosadd | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
|
| 9 | 8 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 10 | 7 9 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) = ( ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) |
| 11 | simpll | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> A e. CC ) |
|
| 12 | 11 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` A ) e. CC ) |
| 13 | simplr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> B e. CC ) |
|
| 14 | 13 | coscld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` B ) e. CC ) |
| 15 | 12 14 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 16 | simpr1 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` A ) =/= 0 ) |
|
| 17 | 11 16 | tancld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` A ) e. CC ) |
| 18 | simpr2 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( cos ` B ) =/= 0 ) |
|
| 19 | 13 18 | tancld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` B ) e. CC ) |
| 20 | 15 17 19 | adddid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) ) ) |
| 21 | 12 14 17 | mul32d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) = ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( cos ` B ) ) ) |
| 22 | tanval | |- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
|
| 23 | 11 16 22 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 24 | 23 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( tan ` A ) ) = ( ( cos ` A ) x. ( ( sin ` A ) / ( cos ` A ) ) ) ) |
| 25 | 11 | sincld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( sin ` A ) e. CC ) |
| 26 | 25 12 16 | divcan2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( ( sin ` A ) / ( cos ` A ) ) ) = ( sin ` A ) ) |
| 27 | 24 26 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( tan ` A ) ) = ( sin ` A ) ) |
| 28 | 27 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( cos ` B ) ) = ( ( sin ` A ) x. ( cos ` B ) ) ) |
| 29 | 21 28 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) = ( ( sin ` A ) x. ( cos ` B ) ) ) |
| 30 | 12 14 19 | mulassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) = ( ( cos ` A ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) ) |
| 31 | tanval | |- ( ( B e. CC /\ ( cos ` B ) =/= 0 ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) |
|
| 32 | 13 18 31 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` B ) = ( ( sin ` B ) / ( cos ` B ) ) ) |
| 33 | 32 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` B ) x. ( tan ` B ) ) = ( ( cos ` B ) x. ( ( sin ` B ) / ( cos ` B ) ) ) ) |
| 34 | 13 | sincld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( sin ` B ) e. CC ) |
| 35 | 34 14 18 | divcan2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` B ) x. ( ( sin ` B ) / ( cos ` B ) ) ) = ( sin ` B ) ) |
| 36 | 33 35 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` B ) x. ( tan ` B ) ) = ( sin ` B ) ) |
| 37 | 36 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) = ( ( cos ` A ) x. ( sin ` B ) ) ) |
| 38 | 30 37 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) = ( ( cos ` A ) x. ( sin ` B ) ) ) |
| 39 | 29 38 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` A ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( tan ` B ) ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
| 40 | 20 39 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
| 41 | 1cnd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> 1 e. CC ) |
|
| 42 | 17 19 | mulcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) |
| 43 | 15 41 42 | subdid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) - ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) |
| 44 | 15 | mulridd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) = ( ( cos ` A ) x. ( cos ` B ) ) ) |
| 45 | 12 14 17 19 | mul4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) = ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) ) |
| 46 | 27 36 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( tan ` A ) ) x. ( ( cos ` B ) x. ( tan ` B ) ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 47 | 45 46 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 48 | 44 47 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. 1 ) - ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 49 | 43 48 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 50 | 40 49 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) = ( ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) ) |
| 51 | 17 19 | addcld | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( tan ` A ) + ( tan ` B ) ) e. CC ) |
| 52 | ax-1cn | |- 1 e. CC |
|
| 53 | subcl | |- ( ( 1 e. CC /\ ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) -> ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) e. CC ) |
|
| 54 | 52 42 53 | sylancr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) e. CC ) |
| 55 | tanaddlem | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) |
|
| 56 | 55 | 3adantr3 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` ( A + B ) ) =/= 0 <-> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) ) |
| 57 | 3 56 | mpbid | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( tan ` A ) x. ( tan ` B ) ) =/= 1 ) |
| 58 | 57 | necomd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> 1 =/= ( ( tan ` A ) x. ( tan ` B ) ) ) |
| 59 | subeq0 | |- ( ( 1 e. CC /\ ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) -> ( ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) = 0 <-> 1 = ( ( tan ` A ) x. ( tan ` B ) ) ) ) |
|
| 60 | 59 | necon3bid | |- ( ( 1 e. CC /\ ( ( tan ` A ) x. ( tan ` B ) ) e. CC ) -> ( ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) =/= 0 <-> 1 =/= ( ( tan ` A ) x. ( tan ` B ) ) ) ) |
| 61 | 52 42 60 | sylancr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) =/= 0 <-> 1 =/= ( ( tan ` A ) x. ( tan ` B ) ) ) ) |
| 62 | 58 61 | mpbird | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) =/= 0 ) |
| 63 | 12 14 16 18 | mulne0d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( cos ` A ) x. ( cos ` B ) ) =/= 0 ) |
| 64 | 51 54 15 62 63 | divcan5d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( ( tan ` A ) + ( tan ` B ) ) ) / ( ( ( cos ` A ) x. ( cos ` B ) ) x. ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) = ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) |
| 65 | 10 50 64 | 3eqtr2rd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) = ( ( sin ` ( A + B ) ) / ( cos ` ( A + B ) ) ) ) |
| 66 | 5 65 | eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( ( cos ` A ) =/= 0 /\ ( cos ` B ) =/= 0 /\ ( cos ` ( A + B ) ) =/= 0 ) ) -> ( tan ` ( A + B ) ) = ( ( ( tan ` A ) + ( tan ` B ) ) / ( 1 - ( ( tan ` A ) x. ( tan ` B ) ) ) ) ) |